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Genetic Algorithm Definitions 

Grefenstette [16]

"A genetic Algorithm is an iterative procedure maintaining a  population of  structures that are candidate solutions to specific domain  challenges.  During  each temporal increment (called a generation), the  structures  in the  current  population are rated for their effectiveness as  domain  solutions,  and on the basis of these evaluations, a new population  of  candidate  solutions is formed using specific genetic operators such as  reproduction, crossover, and mutation."

Goldberg [8]

"They  combine  survival  of  the fittest among  string  structures  with  a structured  yet randomized information exchange to form a  search  algorithm  with  some  of  the  innovative  flair  of  human  search.   In  every generation, a new set of artificial creatures (strings) is created using  bits and  pieces  of  the fittest of the old; an occasional new  part  is  tried  for good  measure.   While  randomized, genetic  algorithms  are  no  simple random  walk.   They efficiently exploit historical information  to  speculate on new search points with expected improved performance."

Genetic Algorithms Overview

_     Developed by John Holland in 1975 [9].

_     Genetic   Algorithms   (GAs)  are   search   algorithms based  on the mechanics of the natural selection  process  (biological evolution).  The most basic concept  is that  the  strong  tend to adapt  and  survive  while  the weak tend to die out.  That is, optimization is based on evolution, and the "Survival of the fittest" concept.

_     GAs have the ability to create an initial population  of feasible  solutions, and then recombine them in a  way to guide their search to only the most promising  areas of the state space.   

_     Each  feasible  solution is encoded  as  a  chromosome (string) also called a genotype, and each  chromosome is  given a measure of fitness via a  fitness  (evaluation or objective) function.  

_     The  fitness of a chromosome determines its ability  to survive and produce offspring. 

_     A finite population of chromosomes is maintained.

Genetic Algorithms Overview Continued

_     GAs  use  probabilistic  rules  to  evolve  a  population from  one  generation to the next.  The  generations  of the  new solutions are developed by genetic  recombination operators:

      _   Biased Reproduction: selecting the fittest to 

            reproduce)

      _   Crossover: combining parent chromosomes to 

            produce children chromosomes

      _   Mutation: altering some genes in a 

           chromosome.

_     Crossover  combines  the  "fittest"  chromosomes  and passes superior genes to the next generation.

_     Mutation   ensures   the   entire   state-space   will   be searched,  (given enough time) and can lead the  population out of a local minima.

_     Most Important Parameters in GAs:                                 

      _   Population Size

      _   Evaluation Function

      _   Crossover Method

      _   Mutation Rate

Genetic Algorithms Overview Continued

_   Determining  the  size  of  the  population  is  a   crucial factor

      _ Choosing  a population size too small increases  the risk  of converging prematurely to a local  minima, since the population does not have enough  genetic material to sufficiently cover the problem space.

      _ A larger  population has a greater chance of  finding the  global  optimum at the expense of  more  CPU time.   

     _  The  population size remains constant from  generation to generation.

Genetic Algorithms Overview Continued

_   A robust search technique

_   GAs will produce "close" to optimal results in a 

    "reasonable" amount of time

_   Suitable for parallel processing

_   Some problems are deceptive

_   Can use a noisy fitness function

_   Fairly simple to develop

_   Makes no assumptions about the problem space

_   GAs are blind without the fitness function.  The

    Fitness  Function Drives the Population Toward  Better

    Solutions and is the most important part of the 

    algorithm.  

_Probability and randomness are essential parts of GA

Use Genetic Algorithms

_   When an acceptable solution representation is available

_   When a good fitness function is available

_   When it is feasible to evaluate each potential solution 

_   When a near-optimal, but not optimal solution is

    acceptable.

_   When the state-space is too large for other methods

Genetic Algorithms vs Traditional Algorithm

Goldberg [8]

1.  The GA works with a coding of the parameter rather

     than the actual parameter.

2.  The GA works from a population of strings instead of 

     a single point.

3.  Application of GA operators causes information from 

     the previous generation to be carried over to the next.

4.  The GA uses probabilistic transition rules, not 

     deterministic rules.

Genetic Algorithms vs. Simulated Annealing

                           SA

          _   1 Feasible Solution                                 

          _   Perturbation Function

          _   Acceptance Function

          _   Temperature Parameter

                           GA

          _   Population of Feasible Solutions

          _   Evaluation Function 

          _   Selection Bias

          _   Reproduction

          _   Mutation

Applications of Genetic Algorithms

_  Scheduling:

      Facility, Production, Job, and Transportation Scheduling

_  Design:

      Circuit board layout, Communication Network design, 

      keyboard layout, Parametric design in aircraft

_  Control:

      Missile evasion, Gas pipeline control, Pole balancing

_  Machine Learning:

      Designing Neural Networks, Classifier Systems, Learning rules

_  Robotics:

      Trajectory Planning, Path planning

_  Combinatorial Optimization:

      TSP, Bin Packing, Set Covering, Graph Bisection, Routing,

_  Signal Processing:

      Filter Design

_  Image Processing:

      Pattern recognition

_  Business:

      Economic Forecasting; Evaluating credit risks

      Detecting stolen credit cards before customer reports it is stolen

_  Medical:

      Studying health risks for a population exposed to toxins

The Standard Genetic Algorithm

               >>>> Use the flowchart I created

               >>>> Replace this page with flowchart page

GENETIC ALGORITHMS

Preliminary Considerations 

1.  Determine how a feasible solution should be represented

      a) Choice of Alphabet.  This should be the smallest alphabet 

         that permits a natural expression of the problem.

      b) The String Length.   A string is a chromosome and each 

         symbol in the string is a gene.

2.  Determine the Population Size.

    This will remain constant throughout the algorithm.

    Choosing a population size too small increases the risk of 

    converging prematurely to a local optimum, since the population 

    does not sufficiently cover the problem space.  A larger 

    population has a greater chance of finding the global optimum 

    at the expense of more CPU time.

3.  Determine the Objective Function to be used in the algorithm.

A Genetic Algorithm 

1.  Determine an Initial Population.

     a)  Random or

     b)  by some Heuristic

2.  REPEAT

    A.  Determine the fitness of each member of the population.

        (Perform the objective function on each population member)

        Fitness Scaling can be applied at this point.  Fitness 

        Scaling adjusts down the fitness values of the super-

        performers and adjusts up the lower performers, promoting 

        competition among the strings.  As the population matures, 

        the really bad strings will drop out.  Linear Scaling is 

        an example.

    B.  Reproduction (Selection)

        Determine which strings are "copied" or "selected" for the 

        mating pool and how many times a string will be "selected" 

        for the mating pool.  Higher performers will be copied more 

        often than lower performers.  Example: the probability of 

        selecting a string with a fitness value of f is f/ft, where 

        ft is the sum of all of the fitness values in the population.

Genetic Algorithm Continued 

   C.  Crossover

        1.  Mate each string randomly using some crossover technique

        2.  For each mating, randomly select the crossover position(s).

            (Note one mating of two strings produces two strings.  

             Thus the population size is preserved.) 

   D.  Mutation

        Mutation is performed randomly on a gene of a chromosome.  

        Mutation is rare, but extremely important.  As an example, 

        perform a mutation on a gene with probability .005.

        If the population has g total genes (g = string length * 

        population size) the probability of a mutation on any one 

        gene is 0.005g, for example.  This step is a no-op most of 

        the time.  Mutation insures that every region of the problem 

        space can be reached.   When a gene is mutated it is randomly 

        selected and randomly replaced with another symbol from the

        alphabet.

   UNTIL Maximum number of generation is reached.

Various Population Representations

_   Chromosomes can be represented as

    _   Bit Strings  (1011 ... 0100)

    _   Reals (19.3, 45.1, -12.9, ... 6.2)

    _   Integers (1,4,2,7,5,9,3,6,8)  Usually Permutations of 1..n
    _   Characters (A, G, Q, ... F)  Usually Permutations

    _   List of rules (R1, R2, ... R20)

_   Chromosomes are all of the same type (Bit Strings)

_   Chromosomes are all the same length

_   The population size remains constant from generation to generation

Reproduction   (Survival of the fittest)

Parents are SELECTED for REPRODUCTION biased 

on the fitness function

Consider the fitness function 

f(x) = 4 * cos(x) + x + 2.5 

0 <= x >= 31

>>> Graph of P0 data points <<<

Initial Population  P0

                                          No. Times

   No.  Chromosome   x     f(x)    P(x)   Selected*
   1     1001 1     19    25.459   .185     2

   2     01 010     10     9.144   .066     1

   3     1 1001     25    31.465   .229     2

   4     00110       6    12.341   .090     0

   5     0 1011     11    13.518   .098     1

   6     1011 1     23    23.369   .170     1

   7     00100       4     3.885   .028     0

   8     10 001     17    18.399   .134     1

   SUM             115   137.580  1.000     8

   AVE              14    17.198   .125     1

   MAX              25    31.465   .229     2

     f(Pop)=  sum f(x)/n  =  137.58 / 8  =  17.198  

     P(x)  =  f(x) / sum f(x) 

           =  the Probability of Selection

*  Based on Selection Roulette Wheel

The Selection Roulette Wheel 

Roulette:  the classical selection operator for generational GA  as described by Goldberg.  Each member of the  pool is  assigned  space on a roulette wheel  proportional  to  its fitness.   The  members with the greatest fitness  have  the highest  probability of selection.  This selection  technique works only for a GA which maximizes its objective  function.

                           << wheel >>

                        Crossover

_   Causes an exchange of genetic material between 

    two parents

_   Crossover point(s) is determined stochastically

_   The Crossover Operator is the most important feature 

    in a GA

Single Point Crossover Example
    Parent 1         1 0 0     1 0 0 1 0 1 0

    Parent 2         0 0 1     0 1 1 0 1 1 1

    Child  1         1 0 0     0 1 1 0 1 1 1

    Child  2         0 0 1     1 0 0 1 0 1 0

Double Point Crossover Example
     Parent 1        1 1 0 1 0 0     1 0 0 1     0 1 1 

     Parent 2        0 1 0 1 1 0     0 0 1 0     1 0 1

     Child  1        1 1 0 1 0 0     0 0 1 0     0 1 1

     Child  2        0 1 0 1 1 0     1 0 0 1     1 0 1

                        Mutation

_   The Mutation operator guarantees the entire state-space

    will be searched, given enough time.

_   Restores lost information or adds information to the population.

_   Performed on a child after crossover.

_   Performed infrequently  (For example, 0.005 probability of 

    altering a gene in a chromosome)

     Child  1       1 1 0 1  0  0 0 0 1 0 0 1 1

     after mutation 1 1 0 1  1  0 0 0 1 0 0 1 1

_   Special Mutation operators may be application dependent (TSP)

_   Adaptive Mutation:  

    _   Monitor the hamming distance between two parents.

    _   The more similar the parents, the more likely mutation 

          is applied. Whitley, Starkweather [25]

           Continuation of the fitness function 

                   f(x) = 4 * cos(x) + x + 2.5 

                          0 <= x >= 31

Population  P1

(After Crossover.  Assume no Mutation)

No.    New        Parents    Crossover   x    f(x)    

    Chromosome   (from P0)     Point
1    01 001        (2,8)        2        9    7.8552

2    10 010        (2,8)        2       18   23.141

3    1001 1        (1,6)        4       19   25.459

4    1011 1        (1,6)        4       23   23.369

5    1 1011        (3,5)        1       27   28.331

6    0 1001        (3,5)        1        9    7.855

7    100 01        (1,3)        3       17   18.399

8    110 11        (1,3)        3       27   28.331

SUM                                    149  162.740

AVE                                     18   20.343

MAX                                     27   28.331

f(Pop0) =  17.198     

f(Pop1) =  20.343 

                >>> plot of the function showing 

                   the 8 initial points 

                   of Pop0 and the 8 points of Pop1

Schema Theory (John Holland)

_   An abstract way to view the complexities of crossover.

_   Consider 6-bit representations where * indicates don't care

         0*****  represents a subset of 32 strings

         1**00*  represents a subset of  8 strings

_   Let H represent a schema such as 1**1**

    _  Order: o(H)

        The number of fixed positions in the schema, H.

        o(1*****) = 1, 

        o(1**1*1) = 3

    _  Length:  delta(H)

        The distance between sentinel fixed positions in H.

        delta(1**1**) = (4-1) = 3

        delta(1*****) = 0

        delta(***1**) = 0    

Fundamental Theorem of Genetic Algorithms

(The Schema Theorem)

The expected number of copies, m, of schema H is bounded by:

       >>>>  Slide from GATUTOR 91

       Where

       m     -  number of schemata

       H    -  schema

       t   -  time or generation

       f  -  fitness function

       fave -  average fitness value

       pc -  crossover probability

       delta - length

       l    - string length

       pm - mutation probability

       o    - order

         Consider H = 1**** in the above problem:

         The Schema Theorem states that

         m(H,P1) >= m(H,P0) f(H)/fave 

             6   >=    4   *   25.753 / 17.198    

             6   >=    6

         (Note in this case o(1****) = 1 and delta(1****) = 0 

         and pm = 0 greatly reducing the formula)

In Other Words:

Theorem:   The  number  of  representatives of  any  schema,  S,  increases in proportion to the observed relative performance of S.

Deception

What Problems are Difficult for GAs

Example: an order-3 deception [25] 

"information  represented  by the schemata in the search space  leads  the search  away  from  the global optimum, and  instead  directs  the  search toward  the binary string that is the complement of the  global  optimum.  The  search  space  is order-3 deceptive .. if  the  following  relationships hold for the [three-bit] schemata:"

     0** > 1**    and    00* > 11*, 01*, 10*

     *0* > *1*    and    0*0 > 1*1, 0*1, 1*0   

     **0 > **1    and    *00 > *11, *01, *10

but, 111 > 000, 001, 010, 100, 110, 101, 011

Example:  f(000) = 28    f(100) = 14

          f(001) = 26    f(101) = 10

          f(010) = 22    f(110) =  5

          f(011) = 20    f(111) = 30

Chaotic, noisy and "needle in a haystack" functions

GA-easy, GA-hard problems

Overview of Genetic Programming

   Koza [11] 

Manipulate strings of instructions rather than strings of data.

Goal:  Allow computers to develop their own software

           (Survival of the fittest computer programs)

Crossover and mutation manipulate branches of the program tree. 

"Genetic  Programming  starts  with  an initial  population  of  randomly  generated computer  programs composed of functions and terminals appropriate to  the  problem  domain.  The functions may be standard arithmetic operations,  standard  programming   operations,   standard  mathematical  functions,  logical   functions,   or domain-specific  functions.   Depending  on the particular  problem,  the  computer program  may  be  Boolean-valued,  integer-valued,  real-valued,   complex-valued, vector-valued,  symbolic  valued,  or multiple-valued.  The  creation  of  this  initial random  population  is, in effect, a blind random search of the search  space  of  the problem.   Each  individual  computer  program in  the  population  is  measured  in terms  of how well it performs in the particular problem environment.  This  measure is called the fitness measure.  The nature of the fitness measure varies with  the problem" [11].

Koza's  initial  problem:   Given  a  set of  initial  predicates  and  possible  actions, develop  (evolve) a computer program (in Lisp) to control the movement of  an  ant searching  for  food.  The chromosome is a variable sized Lisp program  where  the leaf nodes are actions (left, right, move, etc.), and the internal nodes are  predicates or  logic  controls  (if  found food), etc.  Each  chromosome  (program)  is  used  to control  the  actions of a simulated ant in searching for food.  The  evaluation  function  for  a given chromosome is the amount of food gathered by an ant  in  a  fixed amount of time.

Consider the following two parent computer 

programs given as LISP S-expressions.

                       <<<<Fig 6.5 page 101>>>>>

These two parents are equivalently represented as:

(OR (NOT D1) (AND D0 D1)) and

(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1))).

The  first parent has 6 nodes (points) in its S-expression, and the  second parent has 10 points in its S-expression as shown above.

Randomly  select  any  one  of the 6 points in  parent  1  as  its  crossover point, say node "NOT". 

Randomly  select  any  one of the 10 points in parent  2  as  its  crossover point, say node "AND".

The Selected S-expressions are shown below.

            <<< Fig 6.6 page 102 >>

The above crossover fragments are exchanged at node "NOT" in the first parent,  and node "AND" in the second parent to produce  the  following two children S-expressions [11].

               <<<< Fig 6.7 page 102  >>>

Part II

Example Applications of Genetic Algorithms 

Order-Based Genetic Algorithms

_An  order-based GA is where all chromosomes are a  permutation of the list. 

_Order-based GAs greatly reduce the size of the search  space by pruning solutions that we do not want to consider. 

_Order-based  GAs  can  be  applied  to  a  number  of  classic combinatorial   optimization  problems  such  as:  TSP,   Bin Packing,   Package   Placement,  Job   Scheduling,   Network Routing, Vehicle Routing, various layout problems, etc.

_Crossover   functions  for  order-based  GAs   include   Edge Recombination,  Order  Crossover #1, Order  Crossover  #2, PMX,  Cycle  Crossover, Position  Crossover,  etc.   Whitley and Starkweather [20,25].        

PMX (Partially Matched Crossover)  

   Parent 1    3 7 1 9  |  6 4 5  |  2 8     

   Parent 2    4 7 8 5  |  3 9 2  |  1 6       

   ( 6 <--> 3 )    ( 4 <--> 9 )     ( 5 <--> 2 )

   Child 1     6 7 1 4  |  3 9 2  |  5 8     

   Child 2     9 7 8 2  |  6 4 5  |  1 3                   

   Mutation functions for order-based GAs include

       Swap two elements

     *         *                *         *

   9 8 7 6 5 4 3 2 1    ==>   9 3 7 6 5 4 8 2 1                   

       Move one element 

       *                                  *

   9 8 7 6 5 4 3 2 1    ==>   9 8 6 5 4 3 7 2 1                   

       Reorder a sublist 

   9 8  |  7 6 5 4 3  |  2 1    ==>   9 8  |  5 3 4 6 7  |  2 1                   

Traveling Salesman Problem

Example TSP GA executions adjusting pool size:

                    TSP 1024 Cities.  

PoolSize       500             250             125

Length_String  1024 

Trials         100000

Bias           1.9      

RandomSeed     15394157       <same>          <same>

MutateRate     0.15     

NodeFile       cities1024

StatusInterval 5000

RESULT =       116987          88436          90906

TSP 320 Cities.  

PoolSize       2000          1000       500        250        125

Length_String  320

Trials         100000a           

Bias           1.9      

RandomSeed     15394157      <same>    <same>     <same>     <same>

MutateRate     0.15              

NodeFile       cities320

StatusInterval 1000               

RESULTS:

Best:          30,761b       25,708     21,366     18,676c    23,760d    

Worst:         35,102        28,366     23,235     18,676     23,760

Average:       34,209        27,863     22,880     18,676     23,760

a   A poolsize of 2000 for 205,000 trials yielded best of 22,777

b   CPU time on a SPARC 1+ was approximately 100 minutes.

c   Converged after 72,000 trials                                

d   Converged prematurely after 33,000 trials

TSP 105 Cities.  

PoolSize       750          500         250        125

Length_String  105

Trials         70000

Bias           1.9      

RandomSeed     15394157    <same>      <same>      <same>

MutateRate     0.15    

NodeFile       cities105

StatusInterval 1000

RESULTS:

Trials at

Convergence:   109,000      61,000     32,000      9,000

Best:          16,503       17,193     24,079     32,370

Worst:         16,503       17,193     24,079     32,370

Average:       16,503       17,193     24,079     32,370

Additional Applications Using GAs

Three Dimensional Bin Packing Using GAs [29]

Set Covering Problem Using GAs [35]

Multiple  Vehicle  Routing with Time and  Capacity  Constraints Using GAs [28]

Genetic Algorithms and Neural Networks Fixed Architecture 

Genetic  Algorithms  and Neural Networks  Unknown  Architecture

Parallel Genetic Algorithms [32]

k-way Graph Partitioning Algorithm Using GAs [36]

Graph Bisectioning Problem Using GAs [36]

Triangulation of a Point Set Using GAs [37]

The Package Placement Problem Using GAs [33]

Three Dimensional Bin Packing Using GAs [29]

Encoding:  String of integers representing a permutation of the packages

Evaluation:  Height returned by the Next Fit of First Fit Heuristic

Crossover:  Order2, Cycle, PMX, and Random Swap

Mutation: Adaptive, swap 2 packages and rotate on one axis.

RESULTS (in % Fill)

                                                Rotated 

                                                Presorted

                     Without GA    Using a GA   Using a GA

Next Fit Random        31-35%       41-55%        57-66%

Next Fit Contrived     48-50%       56-71%        60-71% 

First Fit Random       36%          41-49%        53-63% 

First Fit Contrived    41-53%       56-59%        67-77% 

               Tables from ART page 12 and 14

Set Covering Problem Using GAs [35]

             Page 6 and FIG 1 of D. Ansa's Slides

Multiple Vehicle Routing with Time 

and Capacity Constraints Using GAs [28]

Genetic Algorithms and Neural Networks

Fixed Architecture 

Given:  A Fixed Connection Topology 

Goal:   Optimize Connection Weights in a Forward-feed Neural

        Network [22]

Example Representation:  

    Each weight ranges -127 to +127 (8-bits)

    Each Chromosome is the concatenated binary weights of the net.

Example Evaluation Function:

    Run  the  Network in a feed-forward fashion for each  training

    pattern just as if one were going to use back propagation.  

    Accumulate the sum of the squared error as the fitness value

Crossover results in new weight values to try

Genetic Algorithms and Neural Networks 

Unknown Architecture

Use GAs to determine a network architecture

Each Chromosome Depicts a Possible Connection Topology

Evaluate each architecture 

Parallel Genetic Algorithms 

Parallel Issues [32]

Migration Interval

    1. After 5,10,20,50,100 Generations

    2. ADAPTIVE

Migration Rate

    1. 10%, 20%, 50% of the population

    2. ADAPTIVE

How to pick the migrants

    1. uniformly

    2. skewed towards the more fit

    3. Generate "an over population" during migration 

        generations so nothing is lost from the sending 

        population, only new comers are analyzed as they come in

    4. Perform an "exchange" of genetic material

    5. ADAPTIVE

Topology

    1. Ring

    2. Hypercube dimensions alternation through the dimensions

Crossover and Mutation

    1. The same strategy on all processors

    2. Different crossover operators and mutation rates on

        different processors

    3. ADAPTIVE

Genetic Algorithm Packages (1993)

_Generational  GA:  the  offspring are saved in  a  separate  pool until  the  pool size is reached.  Then the children  pool  replaces the parent pool for the next generation.  

_Steady-State  GA:  the offspring and parents  occupy  the  same pool.   Each  time an offspring is generated it is placed  into  the pool, and the weakest chromosome is "dropped off" the pool.

_GENITOR [23] -- A Steady-state GA Package  

_GENESIS [16] -- A Generational GA Package

_LibGA  [30]  -- This package was developed at  The  University of Tulsa and offers the best of GENESIS and GENITOR including  the  ability to use several additional  features  including  the ability to use either a steady-state or generational, or a combination (generation gap).

_HYPERGEN   [32]  --  This  package  was  developed   at   The University  of  Tulsa.   This GA package  runs  on  a  hypercube topology multiprocessor system.

_GATutor [34] -- This package was developed at The University of  Tulsa.  It is a self study GA Tutorial Package that allows  the user to grasp the fundamental concepts of genetic algorithms.
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