Proceedings of the 1991 Nineteenth Annual Computer Science
Conference, March 5-7, 1991, San Antonio, Texas, pp.61-70

Fringe Analysis of Binary Search Trees
with Minimal Internal Path Length

Faris N. Abuali
Roger L. Wainwright

Department of Mathematical and Computer Sciences
The University of Tulsa
Tulsa, Oklahoma 74104-3189

ABSTRACT

Binary search trees are well known as a method for
organizing information which supports efficient insert,
delete, and search operations. Considerable attention
has been given recently to maintaining the balance in
binary search trees. A recent algorithm has been de-
veloped which maintains a balanced tree by displacing
kevs, when necessary, using an in-order shift algorithm
(ISA). This tree has minimum internal path length,
and we call such a tree an ISA tree. In this paper

- we investigate the cost of maintaining an ISA tree. We
use fringe analysis to investigate the behavior of such
trees. Several theorems and lemmas are presented de-
scribing the nature of ISA trees and how they grow and
maintain minimum internal path length. We use this
anaylsis to determine the expected number of times an
in-order shift will be required in the construction of
an [SA tree. Furthermore, we define the cost of each
possible in-order shift operation, and determine empir-
ically the expected cost to construct and maintain an
ISA tree. We present some interesting patterns that
emerge in the construction of these trees from one level
to another. We conclude that most of the time main-
tainance of an [SA tree is quite inexpensive. However,
in certain instances it can be quite expensive. The cost
can be justified, however, if searching is the predom-
inant activity, and inserting is relatively infrequent in
comparison.

Key Words Binary Search Trees, In-order Shifting, In-
ternal Path Length, Expected values, Optimal Search-
ing, Fringe Analysis

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-382-5/91/0003/0061  $1.50

61

1. INTRODUCTION

Binary search trees are a method of organizing in-
formation which enables search, insert, and delete op-
erations to be performed efficiently. Binary search trees
can have a worst case search path length of n — 1. and
a best case search path length of logs n. where n is
the number of nodes in the tree. A binary search tree
that grows in a random manner will have an expected
search path length of 1.386 logn n [3]. Thus. significant
search time improvement (perhaps as much as 38% over
the random case) can occur if a binary search tree is
kepr at minimum height at all times. Considerable at-
tention has been given to maintaining the balance in
binary search trees. Generally, the strategies can be
divided into either global rebalancing strategies or lo-
cal rebalancing strategies. Local rebalancing strategles
detect an imbalance in the search tree and restores the
balance of the tree to within acceptable limits. The
most popular local rebalancing strategy is the “AVL
rotations” for height balanced trees. Other local rebal-
ancing strategies include BB trees or weight balanced
trees [6], and a strategy geared on the total internal
path length of the tree [4]. Global rebalancing strate-
gles are generally much more expensive to perform than
local rebalancing strategies. All of the nodes of the tree
must be inspected in order to restore the balance. Vari-
ous global rebalancing strategies can be found in [2,3,7].

Gerasch [3] recently introduced a balancing algo-
rithm for binary search trees. This algorithm has an
overall run-time performance that falls between that
of the local and global rebalancing algorithms. The
trees produced by this algorithm have minimum inter-
nal path length and are balanced with respect to both
the number of complete levels and the number of levels
in the left and right subtrees of each node in the tree.
He presents an insertion algorithm that maintains the
minimal internal path length by displacing keys when
necessary, in an in-order fashion, until a vacant position



1s found somewhere in the last level of the tree. In this
paper we will refer to this algorithm as the ISA algo-
rithm (in-order shift algorithm). He shows that the ISA
algorithm produces trees that are optimal for searching
while exhibiting run-time behavior between logarithmic
and linear in the number of nodes in the tree. Linear
time to perform the ISA algorithm is the worst-case be-
havior. It is assumed the equal likelihood of searches
for each key. The cost of maintaining the tree using the
ISA algorithm to achieve optimal search performance is
expensive. However this is easily justified if searching
is the predominant activity, and the insertion of keys
in the tree is relatively infrequent in comparison. In
this paper, we will further investigate optimal binary
search trees with minimal internal path length, using
the ISA algorithm presented by Gerasch[3] to maintain
optimal balance. The rest of the paper is summarized
as follows. In Section 2 we define an ISA tree, and use
fringe analysis [1] to present several observations and
lemmas concerning the behavior of ISA trees. In Sec-
tion 3 we analyvze the construction of ISA trees. WWe
give theoretical results for both the expected number
of in-order shifts required to build an ISA tree, as well
as the expected cost of construction. Conclusions are
presented in Section 4.

2. FRINGE ANALYSIS FOR ISA TREES

Definition 1. An ISA tree with n nodes (n > 0) is
a binary search tree that is nearly complete to level L.
That 1s, the tree is complete to level L—1 and level L is
either empty or 1s the last non-empty level of the tree.
Also the insertion algorithm that maintains minimal
internal path length is the ISA algorithm described in

(3]

We define the root of a tree to be at level 0. Clearly,
binary trees that are nearly complete to level L are
those trees with minimal internal and external path
lengths.

Definition 2. Given an ISA tree with n nodes, we
define four types of nodes in the fringe (leaf area) of
the tree as follows:

1. E-nodes are external nodes.

2. R-nodes are internal nodes on level L — 1 that have
two external nodes as children.

3. S-nodes are internal nodes on level L —1 that have
one external node and one internal node as chil-
dren.

4. K-nodes are internal nodes on level L that have
two external nodes as children. The number of

K-nodes is the number of nodes on level L, and
is easily determined. An ISA tree with n nodes
that is complete to level L — 1 will necessarily have
n— (2L —1) K-nodes.

Figure 1 illustrates an example ISA tree nearly com-
plete to level L = 3 with the R, K, and S-nodes iden-
tified.

Lemma 1. Let T be an ISA tree with n nodes, R R-
nodes, K K-nodes, S S-nodes, and £ E-nodes, then
2x(R+K)+S=n+1.

Proof. In any binary tree the number of external nodes
equals the number of internal nodes plus one (ie., £ =
n + 1). It follows from Definition 2, that each S-node,
contributes one E-node, and each K-node and R-node
each contribute two E-nodes.

Lemma 2. Let T be an ISA tree with n nodes, R R-
nodes, ' A'-nodes, § S-nodes, and £ FE-nodes, then
an insertion which falls into an external node of an S-
node produces the following changes in the values of
R,K,S,E, and n: R remains unchanged. § < S—1
(the number of S-nodes decreases by 1), K <« K + 1
(the number of N-nodes increases by 1), £ «< E + 1,
and n <=n-+ 1.

Proof. The proof follows from Definition 2. A node
inserted into an external node of an S-node becomes a
RK-node, and the parent node is no longer an S-node.
The values for E and n naturally increase by one.

" Lemma 3. Let T be an ISA tree with n nodes, & R-

nodes, A’ N-nodes, S S-nodes, and £ E-nodes, then
an insertion which falls into an external node of an R-
node produces the following changes in the values of
R,K,S,E.andn: R« R-1,5<S5+1, K « K +1.

E<FEF+1 andn<n+1.

Proof. The proof follows from Definition 2. A node
inserted into an external node of an R-node becomes a
K-node, and the R-node (parent node) changes to an
S-node. The values for E and n naturally increase by
one.

Lemma 4. Let T be an ISA tree with n nodes, R R-
nodes, K KN-nodes, S S-nodes, and E E-nodes, then
an insertion which falls into an external node of a K-
node produces the following changes in the values of
R,K,S, E,and n: (Note the in-order shift algorithm is
required to rebalance the tree except when level L is



empty.)

Case 1. If after the ISA algorithm is performed, a new
node is inserted into an external node of an S-node then
R remains unchanged, S <= S —1,and N & K + 1.

Case 2. If after the ISA algorithm is performed, a new
node is inserted Into an external node of an R-node
then R=R-1,5S<=S+1l,and K &« K + 1.

Case 3. If S=0,and R=20 (ie., 2K = n+ 1), then
a new level of the tree beginsand R<= KN -1, 5 < |,
and K <= 1.

Inall cases E €« E+1,and n < n+ 1.

Proof. The proof follows directly from Lemmas 2, and

3.

Lemma 5. Let T be an [SA tree with n nodes, R -
nodes, i’ K-nodes, and § S-nodes then the probability
of inserting a node in the external leaves of R, N, and
S-nodes are 2R/(n + 1), 2K/(n+ 1), and 5/(n + 1),
respectively.

Proof. Assuming the equal likelihood of inserting each
key, this follows directly from Lemma 1.

Thus the probability of inserting a node into a A’-
node is 2K /(n + 1). However, this will cause an im-
balance in the tree and the ISA algorithm will be used
to rebalance the tree. Thus all insertions into an ISA
tree ultimately result in the insertion into either an S-
node or an R-node, and never into a K-node. The only
exception is when the ISA tree is complete and the in-
serted node is the first node on the next level. This is
the same as case 3 described in Lemma 4.

Lemma 6. Let T be an ISA tree with n nodes, R R-
nodes, K K-nodes, and § S-nodes, then the probability
that inserting a node results in an insertion into the leaf
of an R-node or an S-nodes is given by 2R/(2R + 5),
and S/(2R + S), respectively.

Proof. Throughout this paper we assume the equal
likelihood of inserting each key. There are 2R + S ex-
ternal nodes available for an insertion. The probability
the insertion occurs in an external node of an S-node
is clearly S/(2R+ S), and the probability the insertion
will occur in an R-node is 2R/(2R + S).

Alternatively, we can calculate the probability of

inserting in an external node of an S-node as §/(n+1)+
2K/(n+1)«S/(n+1) if we consider {-nodes as well.
This reduces to S/(2R+ 5). Similarly, we can calculate
the probability of inserting in an external node of an
R-node as 2R/(n + 1) + 2K/(n + 1) * 2R/(n + 1), if
we consider K-nodes. This reduces to 2R/(2R + S) as
expected.

3. CONSTRUCTION OF ISA TREES
3.1 Expected Number of In-order Shifts

Clearly ISA trees offer minimum search times. It
1s important to consider the cost required for maintain-
ing ISA trees. To the authors’ knowledge this has not
been fully investigated. In this section we will analyze
the cost of the construction and maintenance of an ISA
tree. \We will first investigate the expected number of
S-nodes and R-nodes found in an ISA tree. The ex-
pected number of A'-nodes is predictable. Next we will
determine the expected number of in-order shifts re-
quired during the construction of an ISA tree. Finally
we will investigate the cost for each in-order shift oper-
ation and determine theoretically the expected cost to
construct an [SA tree.

Theorem 1. Let T be an [SA tree with n nodes, then
the expected number of S-nodes (denoted by S(n)), in
the tree is given by the following recurrence relation:

n—-2K -1
n—2K+1

Sn+1)= S(n)+ 1,

MLang2dto L1

and

52k = 1.
S5t —1) = 0.

Proof. Define Pn(S,R,K) to be the probability that an
ISA tree with n nodes will have S S-nodes, R R-nodes,
and X' K-nodes. The expected number of S-nodes in
this tree i1s given by

S(n)= >_ Pn(S,RK) 8.
_ 5.R.K
The probability the number of S-nodes decreases

by one when a node is inserted into an ISA tree i
S/(2R+S), and the probability the number of Z-nodes



increases by one is 2R/(2R + S). This follows directly
from Lemmas 2, 3 and 6. Thus,

Sn+1) =Y _Pn(S5R,K)
[(S-1)*(S/(2R+S)+(S+1)
«2R/(2R + S)]
=Y Pn(S,R,K)
[S* - S+2R*S+2R)/(2R+9)]
Since 2R=n+1-2K — 5, we get the following:
=3 Pn(5,R,K)

[S2-54+(n+1=2K-5)S+n+1-2K 5]
n+1-2K

=Y Pn(S,R,K)

[n=2K—1)*S+(n+1-2K)]
n+l1=2K

Thus

n—2K -1

n—2K<+1

S(n+1)= S(n)+1

If n = 2% then the ISA tree is complete to level
L — 1 and only one node appears at level L. Thus
this tree has K = 1 and necessarily S = 1. therefore
S(2%) = 1. Furthermore, if n = 2L+1 _ 1 the ISA tree
is complete to level L and necessarily has no S-nodes.
thus S(2£+1 - 1) =0.

When the first node is added to each new level of an
ISA tree the number of S-nodes is exactly one. To de-
termine the expected number of S-nodes as additional
nodes are added to the level, the above recurrence for-
mula can be used. Finally, as the last node is added
to a level the number of S-nodes becomes zere. An

equivalent formula for calculating S(n), is given

n—2F

Sy = > (@F -1 —(2xi)/2F -1

=0

for2k<n< (QI‘ +2f-h -1,

Note that the sequence is symmetric about n =
(2 +2L-1) - L.

Theorem 2. Let T be an ISA tree with n nodes, then
the expected number of R-nodes (denoted by R(n)), in
the tree is given by the following recurrence relation:

n—2K -1

Rint+1)= 5T

R(n),

oL cncolti o1, L>1
and
R(2F)=2f-1 -1

R(2EH1 —1)=0

Proof. Define Pn(S, R, K) to be the probability of an
ISA tree with n nodes has S S-nodes, R R-nodes, and
K K-nodes. The expected number of R-nodes in this
tree is given by

R(n)= >_ Pn(S.R,K)=R.
S.R.K
When a node is inserted into an ISA tree, the
probability the number of R-nodes decreases by one
is 2R/(2R + S), and the probability the number of R-
nodes remains unchanged is S/(2R + S). This follows
directly from Lemmas 2, 3, and 6.

Thus,

R(n+1)

=Y Pn(S.R.K) (R=(S/(2R+ S))
+(R—1)*2R/(2R+5))

=5 Pn(S,R.K) ((R«S+ 2R% - 2R)
J(2R+ 5))

Since S =n+1— 2K — 2R, we get the following:

. -y (R{n+1-2K-2R)+2R°-2R)
_—_SPn(th) (2R+n+1-2R-2K)

-\ (R*n+R—-2K=R-2R*4+2R*-2R
=ZPn(S,R,I\) n+l-2I\'T

= Y Pn(S.R.K) L5=55 =R

_ n=2K-1 'Rm

— n=2R+1

If the N = 2L then the ISA tree is complete tc
level L — 1 and only one node appears at level L. Thus
this tree has A = 1 and § = 1 and from Lemma 1
R = 2L=1 _ 1. Furthermore if n = 2£7 — 1 the ISA
tree is complete to level L and necessarily has no R
nodes, thus R(2+! — 1) = 0.

When the first node is added to each new level o
an ISA tree the number of R-nodes is exactly, R(2F) =
9L=1 _ 1. To determine the expected number of R
nodes as additional nodes are added to the level, th



above recurrence formula can be used. Finally, as the
last node is added to a level the number of [Z-nodes
becomes zero. An equivalent formula for calculating
R(n) on a given level is given by

R(n) = (24D 1)

n—1

- @EFD —i—2)/2k - 1)

i=2L

Consider the ISA tree with n =9, and K = 2 in
Figure 1. In this particular tree there are two S-nodes,
and two R-nodes. However, it is possible with A7 = 2
to have no S-nodes, and three R-nodes. Intuitively the
expected number of S-nodes and the expected num-
ber of R-nodes can be determined as follows. In this

tree there are eight possible positions to place the two -

K nodes. This represents 28 combinations. In four of
these cases both K-nodes have the same parent result-
ing in no S-nodes and three R-nodes. In the remaining
24 cases the two A-nodes have different parent nodes
resulting in two S-nodes and two R-nodes. Therefore
the expected number of S-nodes in an ISA tree with
n = 9 nedes is calculated to be (24%2+4%0)/23, which
is 12/7. S(9) can also be determined by the above
recurrence formula. In this case n = 8. S(3) = 1.

and S(9) =[(8-2=+x1-1)/8=2=1+1)]=1+1,
which is also 12/7. Furthermore, the expected number
of R-nodes in an ISA tree with n = 9 nodes is calcu-
lated to be (24 =2 4+ 4 % 3)/28, which is 13/7. R(9)
can also be determined by the above recurrence for-
mula. In this case n = 8, R(8) = 3, and R(9) =
[(8=2+1-1)/(8=2=1+1)] =3, which i1s 15/7 as ex-
pected. Table I summarizes various values associated
with ISA trees that are nearly complete to level four.
In addition, Figure 2 gives the number of K'-nodes, and
the expected number of S-nodes and R-nodes in graph-
ical form for the same ISA trees depicted in Table I.

Lemma 7. Let T be an ISA tree with n nodes. The
probability that the ISA algorithm will be required
when a node is inserted into the tree is 2K /(n + 1).

Proof. An insertion of a node into an ISA tree with
n nodes can occur in any of the n + 1 E-nodes. The
only insertions that require the ISA algorithm are in-
sertions that fall in the external nodes of a K-node,
and each K-node has two external nodes (Lemma 4).
Therefore assuming the equal likelihood of each key,
the probability that the ISA algorithm will be required
when inserting a node into and ISA tree with n nodes
is 2K/(n + 1). Consider Figure 1 with n = 9. The

probability that the tenth node inserted into this tree
will require the ISA algorithm is clearly 4/10.

Theorem 3. Let T be an ISA tree nearly complete to
level L with n nodes, then the expected number of ISA
(in-order shifts) required to construct the tree is given

by:

L—-1 2'—=1 23 K-1 2]
IR S RAP >

Proof. An ISA tree complete to level L — 1 with n
nodes has n — (2% — 1) K-nodes (Definition 2). The
expected number of times the ISA algorithm will be
performed in the construction of an n node ISA tree,
denoted as ISA({n), is the sum of the probabilities that
the ISA algorithm is required for each insertion of nodes
1..n as the tree is constructed. The probability that the
ISA algorithm is required for each new insertion is given
in Lemma 7 as 2R /(n + 1).

Consider the expected number of in-order shifts
required for inserting nodes in a given level of an [SA
tree, say level m. There are 2™ nodes to insert on level
m and the number of A-nodes range from 1 to 2™.
Furthermore. the number of nodes of the tree, n, range
from 2™ to 2! — 1. The expected number of in-order
shilts required to insert the nodes on level m is given
by

2™ -1

P
2m 4+ A

K=1 '

Finally, the expected number of in-order shifts for
an ISA tree complete to level L —1 with &' K-nodes on
the partially completed level L is given by the following
formula, which is the desired result.

3.2 Imperical Cost Analysis

The expected number of times the ISA algorithm is
required in the construction of an ISA tree with n nodes
is fairly easy to calculate as shown above. However, the
expected cost of the construction of an ISA tree is much
more difficult to analyze. We define the cost of the
ISA algorithm as the minimum number of nodes that
change values during the in-order shift. In most cases
an in-order shift can be performed either to the right or
the left of the insertion point, and we will assume the



minimum cost shift will always be used. Furthermore,
we define cost as the number of nodes that change value
rather than the number of nodes along the path of the
in-order shift. In this case we assume the tree has a
bidirectional thread connecting the nodes in an in-order
fashion. Note the actual work needed to create a new
node and locate its position in the tree is not included
in the cost (ie., only the cost of the in-order shifting
itself is considered in this analysis).

Consider the average cost computation (expected
cost) going from an ISA tree of size n to size n + 1. It
1s obvious the expected cost for inserting the first node
on any given level is zero. Thus we will consider cost as
it pertains to a given level, such as level 3 in Figure 1.
To compute the expected cost for going from a tree of
size 8 to a tree of size 9, we have to consider the eight
possible ISA trees for n = 8. Furthermore for these
8 possible trees one must consider all of the possible
placements of one additional node, and the actual cost
of any insertions that require the ISA algorithm.

We have devised an enumeration scheme to unique-
Iy identify all possible ISA trees to assist in cost anal-
vsis. Given an ISA tree with n nodes, and A’ A-nodes
on the lowest level we represent the unique shape of the
ISA tree by a series of integers that partitions the tree
by indicating the positions of each A'-node and empty
position as they appear on the level from left to right.
The key to this notation is that the number of digits in
the sequence is the number of partitions {about empty
locations) and 1s always one plus the number of empty
positions on the lowest level of the tree. Each non-zero
integer indicates the number of consecutive. A-nodes
in a row. Thus the sum of the digits always adds to
the number of A'-nodes. Furthermore, two consecutive
non-zero integers implies an empty position (partition)
between them. else a single digit would be used. Also
a zero represents a partition and indicates the presents
of an E-node. For example the configuration of Fig-
ure 1 is uniquely represented by 0100100. If instead
both A-nodes were located in the leftmost two posi-
tions, then the representation would be 2000000. A 3-
partition sequence of 321 uniquely defines an ISA tree
with n = 13 and on the last level the 8 positions left
to right are AA N EN N ERK-nodes. We know this be-
cause a 3-digit sequence represents two empty positions
on the last level, and the sum of the digits represents
six N-nodes. Thus the level of concern on this ISA tree
has 8 locations, implying a total of 7 nodes on complete
levels higher in the tree. The reader is encouraged to
verify that the sequence 10400301 represents uniquely
an ISA tree with n = 24, and the lowest level of the tree
left to right has NEERKKRKEEEKKRKEEK -nodes.

There are two types of in-order insertions: those
that must be performed in one direction called End-
insertions, and those that have the option of going ei-
ther to the left or to the right of the insertion location,
called Mid-insertions. The cost associated with each of
these types of inserts are denoted by Costend and Cost-
mid, respectively. End-insertions occur at K-nodes
that appear at either end of the level. Mid-insertions
occur elsewhere in the level. The cost of an ISA algo-
rithm for Costends are 2k(2k + 1)/2, and the cost of
an ISA algorithm for Costmids are k (k + 1), where k
represents the number of consecutive K-nodes in the
partition. This is the number of nodes that change val-
ues during the in-order shifting. Consider again the
expected cost of going from an ISA tree with 8 nodes
to 9 nodes. The eight possible ISA trees with n = 8
are represented by the partition sequences: 10000000,
(01000000, 00100000, ...,00000001. The first and last of
these sequences each have Costends of 2=(2+1)/2. The
other six partitions each have a Midcost of 1 = (1 + 1).
The total sum of the possible costs 1s 18. Most in-
sertions in this example cost nothing, however. Thus,
the expected or average cost is the total cost divided
by the product of the number of possible configurations
times the number of external nodes. Thus the expected
cost associated with the ISA algorithm in going from
an ISA tree with 8 nodes to a tree with 9 nodes is 18/(8
configurations *9E-nodes) = 0.25.

4. CONCLUSIONS

Binary search trees with minimal internal path
length offer optimal search times assuming equal like-
lihood for searches. We have defined such trees as ISA
trees, which use an in-order shift algorithm to maintain
a balanced tree. We used fringe analysis to imperically
determine the cost of construction and maintainence of
ISA trees. As a summary, Table I depicts the number
of N-nodes, the expected number of S-nodes and R-
nodes, the expected number of in-order shifts, and the
expected cost required in the construction of ISA trees
for n = 15 to 31. Figure 3 graphically illustrates for
n < 32 the incremental expected number of in-order
shifts required in going from n — 1 to n nodes. Fig-
ure 3 also illustrates the accumulative (total) expected
number of in-order shifts required for an ISA tree with
n nodes. The incremental expected number of in-order
shifts ranges from [0..1). Notice the increment is nearly
linear for each new level of the tree.

Figure 4 illustrates the incremental expected cost
in going from n—1 to n nodes in an ISA tree, for n < 32.
As expected the cost is zero for the first node on each



level, and the expected cost increases slowly until the
level begins to fill up. The expected cost exhibits expo-
nential behavior as the level becomes complete. How-
ever, the expected cost behaves in a near linear fashion
for the first half of the nodes inserted on each level. We
have noticed that the expected cost of inserting the last
L —1 nodes on a given level L is as much or more than
inserting all of the other nodes on the level combined.
For example in Table [, where L = 4, inserting the
last three nodes (n = 29,30, 31) costs as much or more
than inserting nodes 16 through 28. Furthermore the
expected cost of inserting the last node on each level
appears to be nearly linear. The expected cost for the
last insertion on a given level can be estimated by the
linear relationship: cost(n) = (n — 7)/3 + 2.43. See
n =7,15, and 31 in Figure 4.

Even though the maintainence of an ISA tree can
be quite expensive in certain instances, most of the time
it is relatively inexpensive. The cost can easily be justi-
fied if searching is the predominant activity, and insert-
ing is relatively infrequent in comparison. As a topic
of further research in this area, we are looking into the
feasability of relaxing the requirement of inserting all
nodes on one level before going to the next. Since in-
serting the last L—1 nodes on each level, L, is extremely
expensive, we are studying the effects of not inserting

these nodes until the expense is within some acceptable

range.
REFERENCES

(1] M.R. Brown, A Partial Analysis of Random Height
Balanced Trees, SIAM J. Comput. 8 (1) (1979) 33-
41.

[2] H.Chang and S.S. Iyengar, Efficient Algorithms to
Globally Balance a Binary Search Tree, Commun.
ACM 27 (T7) (1984) 695-702.

[3] T.E. Gerasch, An Insertion Algorithm for a Mini-

mal Internal Path Length Binary Search Tree, Com-

mun. ACM 31 (5) (1988) 579-585.

[4] G.H. Gonnet, Balancing Binary Trees by Internal
Path Reduction, Commun. ACM 26 (12) (1983)
1074-1081.

[5] D.E. Knuth, The Art of Computer Programming,
vol. 3, Sorting and Searching (Addison-Wesley
1973).

[6] J. Nievergelt and E.M. Reingold, Binary Search
Trees of Bounded Balance, Siam J. Comput. 2 (1)
(1973) 33-43.

(7] Q.F. Stout and B.L. Warren, Tree Rebalancing in
Optimal Time and Space, Commun. ACM 29 (9)
(1986) 902-908. '

67



Figure 1. A Sample ISA Tree with 9 nodes.

Table 1
Various Expected Values Associated with ISA Trees

n X S(n) R(n) ISA(n) ISA(n) Cost(n) Cost{n|
Increment Total Increment Total
15 8 0 0 0.93 6.98 5.13 17.983
16 1 1 7 0 6.98 0 17.93
17 2 28/15 91/15 0.12 710 0.13 18.05
18 3 39/15 78/15 0.22 T.32 0.25 18.31
19 4 48/15 66/15 0.32 7.64 0.39 18.69
20 3 55/15 55/15 0.40 8.04 0.53 19.22
21 6 60/15 45/15 0.48 8.52 0.69 19,94
22 7 63/15 36/15 0.55 9.06 0.86 20 .77
23 8 64/15 28/15 0061 9.67 1.07 21.84
24 9 63/15 21/15 0.67 10.34 1.31 23 .15
25 10 60/15 1 0.72 11.06 1.61 24.76
26 11 55/15 10/15 077 11.83 1.99 26.75
a7 12 48/15 6/15 0.82 12.64 2.50 29.26
28 13 39/15 3/15 0.86 13.50 3.23 32.49
29 14 28/15 1/15 0.90 14.40 4.35 36.83
30 15 1 0 0:.93 15.33 6.30 43.13
31 16 0 0 0.97 16.30 10.48 53.61

68



18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 A

15
Number of Nodes
Fig. 2 Expected Number of S, R, and K—nodes

17 4

16 4

15 4

14

13 4

12 |

e

10 4

9]

81

7

6 Accumulative

51

4]

3]

2]

1] Incremental

0l W '

o " 10 20 30 40

Number of Nodes

Fig. 3 Incremental and Accumulative Expecled
Number of In—Order Shifls

69



11

10

10 20 30
Number of Nodes (N)

Fig. 4 Incremental Expected Cost from N—1 1o N Nodes

70

40



