SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1267-1283 (NOVEMBER 1993)

ISA[k] Trees: a Class of Binary Search Trees
with Minimal or Near Minimal Internal Path
Length

FARIS N. ABUALI AND ROGER L. WAINWRIGHT
Department of Mathematical and Computer Sciences, The University of Tulsa, 600 South
College Avenue, Tulsa, Oklahoma 74104-3189, U.S.A.

SUMMARY

In recent years several authors have investigated binary search trees with minimal internal path length.
In this paper we propose relaxing the requirement of inserting all nodes on one level before going to
the next level. This leads to a new class of binary search trees called ISA[K] trees. We investigated the
average locate cost per node, average shift cost per node, total insertion cost, and average successful
search cost for ISA[Kk] trees. We also present an insertion algorithm with associated predecessor and
successor functions for ISA[K] trees. For large binary search trees (over 160 nodes) our results suggest
the use of ISA[2] or ISA[3] trees for best performance.

KEY WORDS Binary search trees Inorder shifting Internal path length Optimal searching

INTRODUCTION

Binary search trees are very popular and useful data structures for efficiently search-
ing, inserting and deleting data items. Unfortunately, binary search trees can have
a worst case search path length of n—1, where n is the number of nodes in the
tree. However, a best case search path length of log, n is possible for a balanced
tree. A binary search tree that grows in a random manner will have an expected
search path length of 1-386 log, n.' Thus methods that maintain balance in binary
search trees have received considerable attention recently. These algorithms can
offer on the average as much as 28 per cent better performance over randomly
constructed binary search trees.

Binary search tree rebalancing strategies are either local or global. Local rebalanc-
ing strategies detect an imbalance at a particular node in the search tree and restores
the balance of the tree to within the specified limits. The most widely used local
rebalancing strategy is the ‘AVL rotations’ for height balanced trees. Other local
rebalancing strategies, including BB trees and weight balanced trees, are given in
Reference 2. A local strategy geared on the total internal path length of the tree
is given in Reference 3. Global rebalancing strategies are generally much more
expensive to perform than local rebalancing strategies. In the global case, generally
all of the nodes of the tree are inspected in order to restore the tree to complete
balance. Various global rebalancing strategies are given in References 4 and 5.

0038-0644/93/111267-17$13.50 Received 4 June 1992
©) 1993 by John Wiley & Sons, Ltd. Revised 24 May 1993

1268 F. N. ABUALI AND R. L. WAINWRIGHT

Gerasch® has introduced a balancing algorithm for binary search trees. His algo-
rithm has a run-time performance that falls between that of the local and global
rebalancing algorithms. The significance of Gerasch’s balancing algorithm is that it
produces trees that have minimum internal path length. His insertion algorithm
maintains the minimal internal path length of displacing keys when necessary, in an
inorder (infix) fashion, until a vacant position is located somewhere in the last level
of the tree.The following definition comes from Reference 6.

Definition 1

A binary tree with n nodes (n>0) is defiined to be nearly complete to level L,if
it is complete to level L—1 and level L is either empty or is the last non-empty
level of the tree.

The root of a tree is defined to be at level zero. Clearly, binary trees that are
nearly complete to level L are those trees with minimal internal and external path
lengths. The insertion algorithm that maintains the minimal internal path length is
the inorder shift algorithm described in Reference 6. Obviously, the minimal insertion
cost is O(logon) when no reorganization is required. However, in an extreme case
O(n) cost may be required if there is only one free entry in level L of the tree and
the inorder shifting involves all the nodes. If an insertion of a node is beyond level
L, and there are free locations at level L on both sides of the insertion position,
then the inorder shift could be done in either direction. In this case it is important
to choose the direction which will displace the fewest nodes of the tree. Gerasch’s
algorithm does not always choose the optimal direction. An improvement to Ger-
asch’s algorithm that chooses the optimal shift direction is presented in Reference
7.

In our previous research,® we developed several results related to the expected
number of various types of fringe nodes for trees described by Definition 1. Further-
more, we refer to the tree defined in Definition 1 as an ISA tree since the tree
maintains its balance by displacing keys, when necessary, using an inorder shift
algorithm (ISA). We defined the shift cost of the ISA algorithm as the minimum
number of nodes that change values during the inorder shift. In most cases an
inorder shift can be performed either to the right or to the left of the insertion
point, and in all cases the minimum cost shift was used.

Figure 1 shows the shift cost of inserting nodes on a given level. As expected,
the shift cost is zero for the first node on each level of an ISA tree. Notice that
the shift cost increases very slowly until a certain point, then increases very sharply
as the level begins to fill up. The shift cost of inserting the last few nodes on a
given level is as much or more than inserting all of the other nodes on the level.
It is interesting to note the cost midpoint (crossover point) on each level. The
crossover point, x, on a given level occurs x nodes from the end of the level. That
is, at what point on a given level is the sum of the cost of inserting previous nodes
on the level equal to the sum of the cost of inserting the remaining x nodes of the
level? We inserted 8195 random nodes into an ISA tree and noted the shift cost
for each node. We repeated the experiment for 10 random trees and recorded the
average shift cost. The crossover points are shown in Figure 2. For example consider
level 10 (1024 nodes), where the crossover point is 36. That is. the cost crossover

Shift Cost for going from n-1 to n

Point

Crossover

ISA[k] TREES 1269

4500
40001
35004
30004
25004
20004
1500+
lOOGT

500

‘

"k'-"“‘"'\ﬁ'-’v-‘-iw AR

0
0

T T T L . T
1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of Nodes, n

Figure 1. Shift cost for a random ISA[I] tree

160

140+

12049

1004

804

601

404

204

Number of Nodes ¢
2*% (Lf2) =

Level Number, L

Figure 2. Shift cost crossover point for a random ISA[l] tree

1270 F. N. ABUALI AND R. L. WAINWRIGHT

point occurs 36 nodes from the end of the level. Thus the cost (on the average) is
approximately the same to insert the first 988 nodes on level 10 as it is to insert
the last 36 nodes. Note further that the plot of the cost crossover points approximately
fits the function y = 2% for small L, which is shown in Figure 2 for reference. In
our previous work, we concluded that most of the time maintenance of an ISA tree
is quite inexpensive. However, in certain instances it can be quite expensive. Finally,
we concluded that the cost is justified, if searching is the predominant activity, and
inserting is relatively infrequent in comparison.®

ISA[k] TREES

In this paper we propose relaxing the requirement of inserting all nodes on one
level before going to the next. This paper reports the effects of relaxing this
requirement and allowing nodes to be inserted on any of several lowest levels of a
tree. This leads to a new class of binary search trees, called ISA[k] trees.

Definition 2

An ISA[k] tree with n nodes (n>0) is a binary search tree that is complete to
level L, and levels L+1 to L+k (k>0) are all either empty or are the last non-
empty levels of the tree.

Notice that all trees satisfying Definition 1 are ISA[1] trees. Figure 4(a) illustrates
an example ISA[2] tree. The tree is complete to level L=1, and levels L+1 and
L+2 are not complete.

Theorem 1

Let T be an ISA[k] tree complete to level L. Then the number of possible nodes,
n, in T is bounded by 2-%!'—1 s p < 28+k+1 — 2k

Proof

The total number of nodes in a binary tree complete to level L is 2-*!1—1. Recall
that we define the root to be at level zero. Hence this is the least number of nodes
in T, since T is complete to level L. There must be at least one node missing from
level L+1, otherwise T would be complete to level L+1. Therefore there must be
at least two nodes missing from level L+2 and, so forth, up to level L+k. Hence
the maximum number of nodes in T is the number of nodes in a complete tree
to level L+k less the number of nodes in a complete tree with k levels. Thus
n< 2L+k+1 _ 2k.

This result is illustrated in Figure 3. Here we have an ISA[2] tree complete to
level L=1. The minimum number of nodes in this tree is three (2-"'—1). The
maximum number of nodes is 12 (2-*%*1 — 2¥) represented by the circle nodes.

The square nodes represent the minimum number of nodes that must be missing in
the tree and ctill be camnlete ta lavual T

ISA[k] TREES 1271

/\O e
S48 SN

Figure 3. The maximum number of nodes in an ISA[2] tree, with L=1

Theorem 2

Let T be an ISA[k] tree with n nodes. Then the bounds for the highest numbered
level L are given by ceiling(log,(n/2¥+1)—1) < L < trunc(log,(n+1)—1).

Proof
The proof follows immediately from Theorem 1, solving for L.

We elected to implement an ISA[X] tree using an array data structure. The nodes
of the tree are placed in the array in a top-down, left to right order. Heaps and
other almost complete trees are traditionally implemented in this manner. This
implementation makes it very easy to navigate through the tree: given a node in
the tree located at index i in the array, the children are located in positions 2i and
2i+1; the parent is located in position trunc(i/2), provided of course that the values
exist. Figure 4(b) illustrates the corresponding array data stucture for the ISA[2]
tree in Figure 4(a). Vacancies in the tree correspond to empty array posmons The
algorithm to insert a key into an ISA[k] tree is given below.

The insertion algorithm for an ISA[K] tree

1. Insert the key using the traditional binary search tree insertion algorithm.
2. If the location of the inserted key violates the ISA[k] restriction (Definition
2) then
(a) determine the ‘best’ direction to perform the inorder shift. This is
accomplished by repeatedly calling the Successor routine and repeatedly
calling the Predecessor routine from the violated position in the tree
attempting to locate a valid empty location to place the last shifted
element. The direction which requires the minimum number of shifts is
selected.
(b) perform the inorder shift, in the direction determined in part (a). The

1272 F. N. ABUALI AND R. L. WAINWRIGHT

()
e
@/

(a)

1 50
2 30
3 80
4 21
5 37
6 62
7
8 Current
) 25 Insertion
10 Window
11
12 | 60
13 | 75
14
15
(b)

Figure 4. (a) An example ISA[2] tree; (b) corresponding array data structure

Predecessor and Successor routines are used to relocate (shift) the keys
in an inorder fashion.

The number of times the Predecessor and Successor functions are called in Step 2(a)
in the above algorithm is dependent on the structure of the tree at the time and
how full each level is. The cost of Step 2(a) ranges from O(1) to O(n). However,
in our data collection experiments, most of the time Step 2 was not performed; see
Figure 1.

In each ISA[k] tree, a valid insertion window is maintained. The window represents

valid insertion levels where the inserted key can be placed without violating Defi-
nition 2?2 The levele of an ISATLF] tree which conctitiite the incertion window are

ISA[k] TREES 1273

manipulated by two indices in the array implementation of the ISA[k] tree. The
two indices indicate the range of valid insert positions. Since k=2 and L=1 in Figure
4(a), the valid insertion window is levels two and three. This is shown in Figure
4(b) where positions four to 15 are the current valid insert locations. Maintaining
the current insertion window is relatively simple. After each insertion, level L+1
is checked to see if it is complete. If so, the insertion window is shifted down by
one level. For example, suppose node 90 is inserted into Figure 4(a). The ISA[2]
tree becomes complete to level two. This causes the current insertion window of
levels two and three (as shown in Figure 4(b)) to slide down to become levels three
and four. This would translate to positions 8 to 31 in the array in Figure 4(b).

The predecessor (successor) of a node in an ISA[k] tree is the node with the next
smaller (larger) key value. This is the standard definition for predecessor and
successor. These functions look for an open position in the tree within the valid
insertion window in what would be predecessor or successor positions. For example,
consider inserting key 28 into the ISA[2] tree in Figure 4(a). This should be inserted
as the right child of node 25. This translates to position 19 in the array data structure
in Figure 4(b). However, the insertion is outside the valid window. The Predecessor
function will first look at node 25, noting that the left child position of node 25 is
outside the valid insertion window. It will then proceed to node 21 noting that its
left child position is within the valid insertion window. Therefore adjusting the
ISA[2] tree via the Predecessor function involves moving nodes 21, 25 and 28 at a
cost of three keys involved. This is illustrated in Figure 5(a). Now consider the
Successor function after inserting key 28 into Figure 4(a). The successor to 28 is
node 30 which has both its children positions occupied. Thus the next successor
position is considered, which is key 37. The left child of key 37 is checked. If it is
vacant and within the insertion window, the left child of key 37 would represent
the next valid successor position. Since it is an open and valid position, the Successor
function is finished. Hence, adjusting the ISA[2] tree via the Successor function
involves moving key 28 to 30’s position, and moving key 30 to the left child location
of key 37. This is illustrated in Figure 5(b). This involves the movement of only
two keys compared to three keys for the Predecessor function. Thus in this case the
Successor function is the chosen direction for shifting.

The Predecessor and Successor functions for an ISA[K] tree are shown in Figures
6 and 7 in abstract form. Note that the functions Left_child, Right_child, and Parent
are the same as the traditional functions for traversing binary trees. We found all
of these functions very simple to implement when an ISA[k] tree is represented as
an array.

PERFORMANCE ANALYSIS FOR ISA[k] TREES

Construction costs

ISA[k] trees are a class of trees that offer minimum or near minimum search
times. We analyzed numerous ISA[k] trees to determine the cost required for
construction and maintenance. We constructed ISA[k] trees of size n where
n = (2=1) + [(j—1) 29~?], such that 3<i<12 and 1<j<4. That is, we tested 40
tree sizes representing powers of two (less one) and three equal distant values
between each power of two, namely 7, 9, 11, 13, 15, 19, 23, 27, 31, .. ., 2047,

1274 F. N. ABUALI AND R. L. WAINWRIGHT

©
/\ e

T

(b)

Figure 5. Insert Node 28 into Figure 4(a): (a) using the Predecessor function; (b) using the Successo

function

2559, 3071, 3583, 4095, 5119, 6143 and 7167. In addition, for each of the 40 tree
sizes we constructed ISA[k] trees for 1<k<5. Furthermore for each ISA[k] tree
of size n and for each k, ten different random trees were constructed and the
average performance of the ten trees was recorded. This represents a total of 200C

trees.

Definition 3

The locate cost for inserting a key in an ISA[k] tree is the same as an unsuccessful
search cost That i« the heiocht of the Fev after incertinm inta the tres

ISA[k] TREES 1275

Function Predecessor (NODE)

/* This function assumes an array implementation of a tree ¥4
/* as described in Figure 4. A single call to this function *f
/* returns the location in the array of the predecessor of */
/* NODE. Note this location may be empty (vacant) of may *
/* have a value in it. Furthermore, if the location is vacant */
/* this function guarantees the location is within the */
/* insertion window. */

if NODE is a leaf then
{
if NODE the first node on that level then
{
if Left_child(NODE) is within insertion window then
return Left_child(NODE)
else
return NO_PREDECESSOR_FOUND
}
if Left_child(NODE) is within insertion window then
return Left_child(NODE)
while NODE is a left child
NODE = Parent (NODE)
return Parent (NODE)
}
else /* not a leaf node */
{
NODE = Left_child (NODE)
if NODE is an empty location then return(NODE)
while NODE is not a leaf
NODE = Right_child (NODE)
if NODE is not an empty location then
{
if Right_child(NODE) is within insertion window then
return Right_child(NODE)
else
return NODE
}
else
return NODE

Figure 6. Predecessor function

Definition 4

The shift cost for inserting a key is the cost of maintaining the ISA[k] tree (beyond
the locate cost of the key). It is the number of predecessor or successor calls requirec

to complete the inorder shift. The average shift cost for inserting n keys into a tree
ic the eeim of all » <hift coste divided bv »n.

1276 F. N. ABUALI AND R. L. WAINWRIGHT

Function Successor (NODE)

/* This function assumes an array implementation of a tree *x/
/* as described in Figure 4. A single call to this function */
/* returns the location in the array of the successor of */
/* NODE. Note this location may be empty (vacant) of may */
/* have a value in it. Furthermore, if the location is wvacant */
/* this function guarantees the location is within the *x/
/* insertion window. */

if NODE is a leaf then
{
if NODE the last node on that level then
{
if Right_child(NODE) is within insertion window then
return Right_child (NODE)
else
return NO_SUCCESSOR_FOUND
}
if Right_child(NODE) is within insertion window then
return Right_child(NODE)
while NODE is a right child
NODE = Parent (NODE)
return Parent (NODE)
}
else /* not a leaf node */
{
NODE = Right_child(NODE)
if NODE is an empty location then return (NODE)
while NODE is not a leaf
NODE = Left_child(NODE)

if NODE is not an empty location then
{
if Left_child(NODE) is within insertion window then
return Left_child (NODE)
else
return NODE
}
else
return NODE

Figure 7. Successor function

Note that if a node is inserted into a valid window location in the tree, there will
be no <hift cost onlv a locate coet

ISA[k] TREES 1277

Definition 5

The insertion cost of an ISA[k] tree of size n is the cost of inserting each key in
the tree. That is, insertion cost = 3 (locate cost(i) + shift cost(i)), 1<isn.

Locate cost(i) and shift cost(i) are dependent on the particular list of keys preceding
the ith key. That is, the cost is dependent on the current shape of the tree when
the ith node is inserted. These functions do not represent average locate and shift
costs for the ith node over all possible tree shapes. We use this definition to
determine insertion cost empirically as we construct random ISA[K] trees of various
sizes.

Definition 6

The total successful search cost of an ISA[k] tree of size n is 2 [(number of nodes
at level i) x i), Osi<last level. This is the same as the traditional definition for the
internal path length of a tree. Thus the average successful search cost for a node
in an ISA[k] tree of size n is the total successful search cost/n.

During construction of each ISA[k] tree the following statistics were collected:
(1) the locate cost for each insertion, (2) the shift cost for each insertion, (3) the
total insertion cost of the tree, (4) the number of insertions requiring an inorder
shift and (5) the average successful search cost of the tree after construction was
completed.

In Figures 8-13, for each tree size n and each value of &, ten random trees were
generated and the average performance of the ten trees is depicted. Figure 8 depicts
the average locate cost for all of the trees tested (the sum of the locate cost to
insert all n nodes/n). Notice that the average locate cost is O(log,n) as expected,
and appears to be independent of k, when k<6.

12

ary

[
.
1

AR R AR
B b

104

w
\

Average Locate Cost per Insertion

T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 80
Number of Nodes

(=]
o

Ficure 8. Average locate cost for a random ISA[K] tree

1278 F. N. ABUALI AND R. L. WAINWRIGHT

Figure 9 shows the number of insertions requiring a shift. Results indicate that
the value of k has little impact on the amount of rebalancing required. Incrementally
there is little change in the amount of rebalancing between an ISA[k] and ISA[k+1]
tree for values of k under six. This is an interesting result. For example, for tree
size 7167 the difference between k=2 and k=5 is about 3 per cent. Furthermore,
Figure 9 shows that the number of insertions requiring rebalancing ranged from 55
to 58 per cent and appears to depend very little on the size of the tree or k. Given
an ISA[k] tree with n nodes, the probability of inserting a node outside of the
insertion window is 2x/(n+1), where x is the number of nodes on the lowest level.
Our results show that inserting the same n nodes into an ISA[k+1] tree yields
approximately (within a few per cent) the same number of nodes on the lowest
level. This result applies to random trees and may not apply to other types of trees.
Note that the amount of rebalancing is not totally indepenent of k, however, since
rebalancing goes to zero as k goes to infinity.

Figure 10 shows the average shift cost per node for all tree sizes and k values
tested. Figure 11 shows an enlargement of Figure 10 for tree sizes < 1000. The
value of k has a tremendous effect on the shift cost. Results show that for small
size trees (around 160 or less, Figure 11) larger k values tend to reduce the shift
cost. However, for larger tree sizes (over 160 or so) the larger k values become
much more expensive than smaller k values. The number of insertions requiring a
shift varies little with k& (Figure 9). Hence the contributing factor for shift cost for
any tree is the shift cost of each individual insertion. This implies, for larger k, that
individual shift costs are more expensive. We believe that the reason for this is the
clustering of nodes within the insertion window. Small clusters tend to breed larger
clusters, since any node inserted into a cluster will increase the cluster size by one.

4500

4000+

~AARAEE
{1 I I T |

s W N =
N,
>,
s
“
S
W

3500
3000

2500+

2000

1500 ,’45

1000 i

500

Average Number of Insertions Requiring
a Shift

0

T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Figure 9. Average number of insertions requiring a shift for a random ISA[K] tree

[S2]
o

w
o

Average Shift Cost per Insertion
=Y
fa]

25

20

Average Shift Cost per Insertion

ISA[k] TREES

1278

|

i Lo B

AAAE AR

mwoamonn
w

I

1

1

’a
ya

T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes
Figure 10. Average shift cost for a random ISA[K] tree
k=1 — .
k=2 === T
k=3 - /,/’
k=d
1 k=5 === 7’."
T T T I T
0 200 400 600 800 1000 1200

Number of Nodes

T 1T Averaae ohift reet far a random ISATk] tree (first 1000 kevs)

1280 F. N. ABUALI AND R. L. WAINWRIGHT

The cost of clustering is more pronounced for larger tree sizes. In smaller tree sizes
(under 160 or so) we suspect several factors are at work, and it is difficult to
speculate on the reasons why larger k values perform better. Notice that for each
value of k, the graphs tend to have local peaks at or near each power of two as
another level fills up. We ran some additional test cases for various values of n
near each power of two. Depending on the sequence of the vlaues inserted into an
ISA[k] tree, the peak shift cost does not always occur precisely at the power of
two. Our tests show, however, that the actual peak is usually well within 5 per cent
or so of each power of two.

Figure 12 depicts the total insertion cost (locate cost + shift cost) for the ISA[X]
trees tested. Notice this is almost identical to Figure 10. Since the locate cost does
not vary much with k (Figure 8), the total insertion cost is primarily dependent on
the shift cost (Figure 10). Notice that in every case for tree sizes greater than 160
keys or so, either k=2 or k=3 is the optimal k value, not k=1, as might be expected.

Successful search costs

Figure 13 depicts the average successful search cost after constructing the ISA[k]
trees. This cost is O(log n) and independent of k. Owing to the behavior of the
Predecessor and Successor shift algorithms, there is a tendency within a window for
the higher levels to fill more rapidly than the lower levels. This appears to be
independent of k as shown in Figure 13. Notice in Figure 13 that the best case is
the same as k=1. For comparison the worst case was determined (for k=5) and
plotted. The interesting result is that the plots for 1<k<5 are all grouped together
very close to the best case and well below the worst case.

90
k=1 —
4 k=2 - i
80 x=3 Ny
k=4 - ; \\\
704 k=5 -~ i ~

per Insertion

Average Number of Shifts and Locates

T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of Nodes

Figure 12. Average construction cost for a random ISA[K] tree

ISA[k] TREES 1281

14

=
o]
1

Average Successful Search Cost

4+ best (k=1) —
worst (with k=5) ----

k=2
)
47 k=4 ---
k=5 ===

0 T T T T T T T T

0 1o00 2000 3000 4000 5000 6000 7000 8000 9000

Figure 13. Average successful search cost for a random ISA[K] tree

Inserting sequential keys into an ISA[K] tree

We conducted a second set of experiments on ISA[k] trees. How do ISA[k] trees
behave when constructed from an increasing sequence of keys instead of random?
Figure 14 shows the average number of insertions requiring a shift. As expected for
a sorted sequence of keys this was nearly 100 per cent. The plots for 1=<k<5 are
indistinguishable and are independent of k. Furthermore, Figure 15 shows the
average shift cost for a sorted sequence of keys. Results are indistinguishable for
the various k values. The shift cost peaks at powers of two as expected. However,
the shift cost is independent of k, which is not true for random keys.

RESULTS AND CONCLUSIONS

Throughout this paper we have assumed the equal likelihood of inserting each key.
Thus binary search trees with minimal internal path length offer optimal search
times. We proposed relaxing the requirement of inserting all nodes on one level
before going to the next level, leading to a new class of binary search trees, ISA[k]
trees. The results of allowing nodes to be inserted on any of several lowest levels
of a tree has proved very interesting. When constructing an ISA[k] tree we noticed
that the average locate cost is O(log,n) as expected, and is independent of k. Results
indicate that the value of k has little impact on the amount of rebalancing required.
That is, the number of insertions requiring a shift is also independent of k. However,
the average shift cost per node is dependent on k. For small size trees (under 160
nodes or so), larger k values tend to have lower shift costs. Conversely, for larger
trees (over 160 nodes or so) the higher the k value, the higher the shift costs.
The important issue for an ISA[k] tree is the total insertion cost. Since the locate

1282

Average Number of Insertions Requiring
a Shift

Average Shift Cost per Insertion

-8000

F. N. ABUALI AND R. L. WAINWRIGHT

7000+

6000

5000+

4000

30004

20004

10004

Eat i
L1 I}

(SR WL N

Figure 14. Average number of insertions requiring a shift for a sorted ISA[K] tree

T T T T T T
1000 2000 3000 4000 5000 6000

Number of Nodes

T
7000

8000

2500

2000+

15CC

10004

5004

AR AR
L L | N L 1}

L O

T T T T T T
1000 2000 3000 4000 5000 6000

Number of Nodes

Figure 15. Average shift cost for a sorted ISA [k] tree

-
7000

8000

ISA[k] TREES 1283

cost is independent of k, the total insertion cost is dependent primarily on the shift
cost. The important results presented in this paper are (a) the shift cost is the major
issue in deciding which k to select, (b) for tree sizes greater than 160 keys or so,
either k=2 or k=3 is the optimal k choice, not k=1 as might be expected, and (c)
the average successful search costs are relatively independent of k.

Even though the maintenance of an ISA[k] tree can be quite expensive in certain
instances, the cost can be justified if searching is the predominant activity, and
inserting is relative infrequent in comparison. Therefore for large binary search trees
(over 160 nodes) we suggest that the user consider using an ISA[2] or ISA[3] tree.

For future research we are looking at the inorder shift algorithm to improve the
selection of the ‘best’ direction to perform the shift. It seems intuitive to select
empty locations in ‘unsaturated’ regions of the tree. We are investigating the use
of a weighted average based on factors such as ‘saturation’ of the region to the left
and to the right of an empty location, rather than the minimum cost predecessor
or successor shift.

ACKNOWLEDGEMENTS

This research has been partially supported by OCAST Grant ARO-038. The authors
also wish to acknowledge the support of Sun Microsystems Inc. The authors would
like to thank the referees for their thorough reading of the manuscript, which
resulted in numerous improvements and clarifications.

REFERENCES

1. D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Addison-Wesley,
1973.

2. J. Nievergelt and E. M. Reingold, ‘Binary search trees of bounded balance’, Siam J. Comput, 2,
(1), 33-43 (1973).

3. G. H. Gonnet, ‘Balancing binary trees by internal path reduction’, Commun. ACM, 26, (12),
1074-1081 (1983).

4. H. Chang and S. S. Iyengar, ‘Efficient algorithms to globally balance a binary search tree’,
Commun. ACM, 27, (7), 695-702 (1984).

5. Q. F. Stout and B. L. Warren, ‘Tree rebalancing in optimal time and space’, Commun. ACM,
29, (9), 902-908 (1986).

6. T. E. Gerasch, ‘An insertion algorithm for a minimal internal path length binary search tree’,
Commun. ACM, 31, (5), 579-585 (1988).

7. 1. Richard, ‘“Technical correspondence on Gerasch’s insertion algorithm’, Commun. ACM, 34, (2),
79-80 (1991).

8. F. N. Abuali and R. L. Wainwright, ‘Fringe analysis of binary search trees with minimal internal
path length’, Proceedings of the 1991 Computer Science Conference, San Antonio, Texas, 5-7
March, 1991, pp. 61-70.

