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Abstract

In this paper we investigate genetic algorithms (GA) as a
heuristic technique for obtaining near optimal solutions to the
probabilistic minimum spanning tree (PMST) problem. The
PMST problem is a natural generalization of the classical
minimum spanning tree (MST) problem and is frequently a
more realistic model. The PMST problem addresses the
circumstances that arise when not all nodes are
deterministically present but, rather, nodes are present with
known probabilities. Although there are some special cases
that are solvable in polynomial time, it is known that the
PMST problem is NP-complete.

1. Introduction

The minimum spanning tree (MST) problem is one of the
classical combinatorial graph optimization problems.
Finding the minimum spanning tree in a connected graph has
many applications to routing and scheduling problems that
include transportation and telecommunications. There are
many well known polynomial time algorithms, including
Prim's algorithm and Kruskal's algorithm, that can be found in
almost any textbook in discrete mathematics or data structures
[16].

Recently, Bertsimas defined the Probabilistic Minimum
Spanning Tree (PMST) problem as a probabilistic variation of
the classical MST problem [3]. The PMST problem is a natural
generalization of the MST problem and is frequently a more
realistic model in many of the applications where MST
solutions have previously been used. Given a graph, G =
(V.E), where there is a cost associated with each edge, the
PMST problem assumes that each subset of nodes is active
with a certain a priori probability. Given any spanning tree,
say T, of G, one defines its active cost at time a to be the sum
of the costs of the edges in a subtree T4. Ty is the subtree of T
obtained by retaining only those edges required to insure
interconnection among the nodes that are active at time a. The
objective in solving the PMST problem is to find the
spanning tree having the smallest expected active cost.

Although there are some special cases of the problem that are
solvable in polynomial time, Bertsimas showed that the PMST
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problem is NP complete. In fact, he showed that there are
many natural and restricted cases of the problem that are also

* NP-complete. The objective of this research work is to apply

genetic algorithm techniques to find near optimal solutions to
the PMST problem for selected graphs and for selected
probability density functions on the power set of all vertices.
Results are compared to the expected active cost of the
minimum spanning tree. To our knowledge, genetic
algorithms, simulated annealing, or other techniques for
obtaining near-optimal solutions have not been applied to the
PMST problem.

2. The Problem
Bertsimas has formally defined the problem as follows [3]:

Given a connected graph G = (V,E). not necessarily complete.

a cost function c:E->R, and a probability function p:2v->
[0,1], the objective is to find a spanning tree. say 7T, that
minimizes the expected active cost, E[LT], where

ElLr]= ) p(S)Lz(S)

scv

Note that the summation is taken over all subsets of V. For a
spanning tree T, T(S) is the minimum subtree of T that is
required to interconnect all the nodes in 5. L7y is the total
cost of the edges in T(S).

Whenever T is a spanning tree of a graph and S is a subset of
the vertices, we refer to T(S) as the active subtree of T
corresponding to S. To illustrate T(S5), consider a complete
graph with nine nodes and the spanning tree, T, indicated in
Figure 1. Further suppose that, at some point in time, the
collection of nodes present is § = {2.4,5,6.8}. Then T(§) is
indicated in Figure 2. Note that node | is not in 5 and the
edges (9,1) and (1,2) are absent in 7(5). This follows because
node 9, a leaf node adjacent to node 1, is also not in §. Note.
further, that node 7 is not in §, yet, edges (2,7) and (7,5) are
still present in T(S§). This follows because there are nodes on
each side (relative to T) of node 7 that need to be
interconnected by T(S).

[f one assumes that node i is active with probability p; and that
the nodes are independent, then p:2v->[0.I] is determined.
That is, the probability associated with any subset of V is
obtained by multiplying the corresponding p;'s. In this case,
Bertsimas shows that the expected active cost, E[LT], of a
given spanning tree is given by the expression

Edc){l—ﬂ(l—m)}{l- I1 (1—p.-)}
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The summation is over all edges in the tree T. Removal of any
edge, e, partitions T into two subtrees. The set of vertices in
one subtree is denoted by Ka and the set of vertices in the other
subtree is denoted by V - Ko, The summation indicates that

computing E[L7] is O(nz) where n is the number of nodes. In
fact, E[L7] can be computed in O(n) time [3].

Bertsimas verified several results regarding the difficulty of the

PMST problem when p;=p V i[3]. The problem is NP-
complete if either the graph is non-complete and the costs are
equal, or if the graph is complete and the costs can assume one
of two distinct values, 1 or M. Further, whenever the MST is a
star tree, as is the case when the graph is complete and all of
the edge costs are the same, the MST is the PMST and, hence,
the PMST can be found in polynomial time. In this paper we
are only interested in the cases of the PMST problem that are
NP-complete. Bertsimas also produced a bound on the
difference between the expected active cost of the classical
MST, E[LpssT]. and the expected active cost of the optimal
PMST, E[LTp]

In instances where the probability of each node being present
is very high, the problem is nearly equivalent to the classical
minimum spanning tree problem and the optimal or near
optimal solution represented by the minimum spanning tree is
very difficult to improve upon. However, in instances where
the probability of each node being present is very low, the
problem is nearly equivalent to the Network Design problem, a
classical NP-complete problem [3. 11].

3. Telecommunications Network Design

The PMST problem has applications in telecommunications
network design. Consider a network of nodes where there are
certain requirements for communication among the nodes and a
desire to design an a priori spanning tree structure to
interconnect the nodes. Further suppose that the requirement
for a particular node to be "on line” at any point in time is
stochastic, and that line costs are incurred only when a line is
required to service a node that is "on line”. Further assume that
any node is able to support pass-through traffic even when it is
not "on-line”. The PMST represents the strategy for
interconnecting the nodes that has the lowest cost over time.

There are other applications related to telecommunications
network design and to VLSI design. Bertsimas also articulates
an interesting example where the most cost effective
organizational structure in a "spy network” is a PMST [3].

4, The Greedy Algorithm

Our greedy algorithm simply computes the classical minimum
spanning tree. The selection of the tree considers edge cost
but does not consider the probabilistic presence of nodes. For
comparison to our genetic algorithm strategies, the expected
active cost of the MST (which does reflect the probabilistic
presence of nodes) is computed. On the other hand, our genetic
algorithm applied to the PMST problem evaluates the
suitability of many spanning trees with respect to edge cost
and with respect to the probabilistic presence of nodes.

5. Genetic Algorithms

Several researchers have investigated the benefits of solving
combinatorial optimization problems using genetic
algorithms [1, 2, 4, 6, 10, 17]. Davis, Goldberg and Rawlins
provide an excellent in depth study of genetic algorithms [8,

9, 12, 15]. It is assumed that the reader is familiar with the
fundamentals of genetic algorithms (GA). The GA package
used in this research is LibGA [7].

6. GA Encoding for the PMST Problem

One of the first theorems in graphical enumeration was
' I
Cayley's theorem that proved there are n("-2) distinct labeled

trees on n vertices [5]. Equivalently, there are n("-2) distinct
spanning trees of a complete graph on n vertices. Prufer
provided a constructive proof of Cayley's theorem by
establishing a one to one correspondence between such trees
and the set of all strings of n-2 integers between 1 and n. [14]
Consequently, we designed our chromosome encoding of a
candidate PMST to be a string of n-2 integers between 1 and n.

For example, the chromosome corresponding to the spanning
tree of a complete graph on nine vertices represented in Figure
1is(2 7 3 2 7 2 1). The key to Prufer's construction is that
any tree has at least two vertices of degree equal to one [16].
The chromosome encoding of Figure 1 is described as follows.
Locate the node of degree one having the smallest label. In our
case, this is node 4. Since node 2 is the node (the only node)
in the tree that is adjacent to node 4, we assign 2 to the first
allele in the corresponding chromosome. We continue the
process on the subtree resulting from removing node 4 and the
edge from node 2 to node 4. We summarize this first step and
the successive steps of the construction:

2 becomes first allele, removing node 4 and edge (2.4),
7 becomes next allele, removing node 5 and edge (5.7), and
3 becomes next allele, removing node 6 and edge (3.6).
2 becomes next allele, removing node 3 and edge (2.3),
7 becomes next allele, removing node 8 and edge (7.8),
2 becomes next allele, removing node 7 and edge (2.7). and
1 becomes next allele, removing node 2 and edge (1.2).

The tree that remains consists of nodes 1 and 9 and the edge
(1.9). The algorithm stops when the remaining tree has two
nodes and one edge remaining.

Conversely, since the procedure is not immediately obvious,
we also illustrate the strategy to construct a spanning tree in a
complete graph on nine nodes from a given chromosome [16].
The key observation is that the degree of each labeled node is
one more than the cardinality of the node number in the
chromosome. For the chromosome (2 7 3 2 7 2 1), the
degree of node 1, 2, 3, 4, 5,6, 7, 8 and 9 is, respectively, 2, 4,
2, 1,1, 1,3, 1and 1.

The smallest labeled node of degree one is node 4. Since 2 is
the first allele in the chromosome, node 4 must be adjacent to
node 2. After inserting an edge from node 4 to node 2, we
decrement the remaining degree of node 2 from 4 to 3, and
decrement the remaining degree of node 4 from 1 to 0. The
process then repeats.

Several different crossover operators were used in our genetic
algorithm for solving the PMST problem. The first crossover
operator we considered was the standard single point
crossover. To see how this works on spanning trees, consider
two parent chromosomes (273272 1)and(3319751)
shown in Figures 1 and 3, respectively. Assume the single
point crossover point is between the third and fourth alleles.
This produces children chromosomes of (273975 1) and (3 3
127 2 1) shown in Figure 4 and Figure 5, respectively. Even
though there are some similarities between the parent
spanning trees and the resulting children spanning trees in



this simple example, we observed that the single point
crossover operator often produced children that were quite
dissimilar to their parents. Hence, the single point operator
appears to be disruptive.

Next, we considered several asexual crossover operators (one
parent producing one child). The first asexual crossover
operator is a left circular shift of the chromosome by a fixed
number of positions. As an example, consider the
chromosome in Figure 1 after a left circular shift of four
positions. The result is the spanning tree shown in Figure 6.
Notice that this crossover operator preserves the degrees of all
of the nodes; only the links are rearranged.

We also implemented a crossover operator that exchanges
alleles in two randomly chosen positions in the chromosome.
Figure 7 is the result of exchanging the third and sixth alleles
in Figure 1. An interesting result occurs when two alleles are
exchanged in a chromosome where both alleles appear only
once. For example, Figure 8 shows the result of exchanging
the third and seventh alleles of Figure 1 (allele values one and
three, which each appear only once in the chromosome). This
results in a simple exchange of the two nodes in the resulting

spanning trees. In Figure 1, node 1 is adjacent to nodes 2 and .

9, and node 3 is adjacent to nodes 2 and 6. In Figure 8 this is
reversed: now node 3 is adjacent to nodes 2 and 9, and node 1 is
adjacent to nodes 2 and 6. In general, we found the asexual
crossover operators to be less disruptive than the single point
Crossover.

The mutation operator consists of randomly selecting an
allele and altering its value to be a random number between one
and the number of nodes. For example, consider Figure 1
where the fourth allele is altered to a value of one. The results
are shown in Figure 9. Notice that, in this instance, a simple
change results from Figure | to Figure 9, which is a desired
characteristic of any mutation operator. An edge is removed
connecting nodes 2 and 3, and is reattached between nodes 1
and 3. A close inspection of the difference between the
chromosomes in Figure 1 and Figure 9 yields this same
insight. Notice, in the chromosome of Figure 9, that the
degree of node 2 decreases by 1. and the degree of node 1
increases by one in comparison to the original chromosome in
Figure 1. This necessitates the single edge change described
above.

One of the benefits of our chromosome encoding scheme used
to represent a spanning tree, is that all possible chromosomes
are feasible solutions. That is, any allele can take on any
value from one to the number of nodes, and this will always
result in a spanning tree. Consider one extreme where all
allele values are identical, (4 4 4 4 4 4 4), for example. The
reader is encouraged to verify that this represents a star
topology with node 4 as the hub. At the other extreme,
consider another case where each allele value is unique, for
example (1 23456 7). The reader can verify that this results
in a tree that is a list. The links are between nodes 8-1-2-3-4-
5-6-7-9.

7. The Test Cases

As indicated above, when each node is present with a
probability that is near 1, the PMST problem is nearly the
same as the MST problem. Hence, if nodes are present with
probability nearly 1, the genetic algorithm strategy will have
a difficult time evolving a candidate PMST that is better than
the MST.

In our research, two types of data sets were devised. In each
case, a complete graph on 20 nodes was generated. The nodes
were randomly placed on a 100 x 100 grid. The cost of each
edge is the Euclidean distance. With the first type of data set,
the probability associated with each node was 0.1. The first
type of data set was replicated five times using different
random number seeds to generated coordinate positions for the
nodes. For each of the five repetitions of the first type of data
set, the expected active cost of the classical MST was
compared to the expected active cost of various spanning trees
evolved by applying genetic algorithm strategies with various
options for crossover and mutation.

The second type of data set was deliberately contrived so that
the the classical MST was not likely to be the PMST. To make
the problem interesting, the classical MST is generated before
pi, the probability associated with node i, is assigned. The
leaf nodes of the classical MST were assigned a probability of
0.8. The internal nodes of the classical MST were assigned a
probability of 0.1. The intent was that the PMST would be
more likely to have internal nodes of the classical MST as
external nodes and conversely. Again a genetic algorithm was
executed to determine a near optimal PMST. The expected
active cost of the classical MST was compared to the expected
active cost of the GA evolved candidate PMST.

8. Results

Table 1 shows the results of the PMST problem for the first
type of data set where there are 20 nodes and each node is
active with a probability of 0.1. We tested five different
crossover operators: Uniform, Single Point, Shift Left 1, Alter
Allele, and Swap 2 Alleles. For each crossover operator, we
tested three types of mutation operators: None (no mutation),
Alter Allele, and Swap 2 Alleles. Notice that the mutation
operators are also crossover operators. Each combination of
crossover operator and mutation operator was run five different
times with a different random placement of the 20 nodes within
the region. The resulting expected active costs are denoted in
Table 1. The results from the greedy algorithm are given at the
bottom of Table 1 for comparison.

The "*" in Table | indicates every instance where the genetic
algorithm obtains a better solution than the greedy algorithm.
When considering the Uniform crossover operator, the Alter
Allele murtation performed best. For the Single Point
crossover, the Alter Allele mutation also performed best.
Notice the dismal performance of the Shift Left I crossover
operator. For the Alter Allele crossover operator , both the
Alter Allele mutation and the Swap 2 Alleles mutation
performed well. For the Swap 2 Alleles chromosome operator,
the Alter Allele mutation performed best.

Now consider the best single performance in each of the five
random cases: 5.5 in case [, 61.0 in case II, 57.0 in case III,
63.6 in case IV, and 61.0 in case V. In each instance this
occurred when Alter Allele was the mutation operator. The
crossover operators yielding the single best result over the
five cases included Uniform, Alter Allele and Swap 2 Alleles,
but not Single Point or Shift Left I.

The conclusion from our research with the first type of data set
is that the best mutation operator for our encoding of the
PMST problem is definitely Alter Allele. The best crossover
operators, using the Alter Allele mutation operator, are
Uniform, Alter Allele, and Swap 2 Alleles. Our findings
indicate that Single Point crossover and Shift Left | crossover,
regardless of the mutation operator, are too disruptive for our



encoding of the PMST problem and are not good candidates for
the genetic algorithm. Furthermore, the GA results for the
Alter Allele mutation operator with any of the three best
crossover operators is superior to the greedy algorithm in
every instance tested.

The results for the contrived data set are indicated in Figure 10
and Figure 11. The classical MST for twenty nodes is shown in
Figure 10. The classical cost (length) of the MST is 265.
After letting the internal nodes of the classical MST be active
with probability 0.1 and the leaf nodes of the classical MST be
active with probability 0.8, the expected active cost of the
classical MST is 228.

The GA algorithm was then applied to the same data set as
indicated in Figure 10. That is, the node locations remained
the same. Further, as with the data set indicated in Figure 10,
the probability associated with each node was assigned to be
0.1 or 0.8 depending upon whether the node is a leaf node or an
internal node of the classical MST. The Uniform crossover
operator and the Alter Allele mutation operator were used with
the GA algorithm. The "near optimal” PMST evolved by the
GA algorithm is indicated in Figure 11. The expected active
cost of the spanning tree in Figure 11 is 210. For comparison,
the classical cost (the total length of all of the edges,
disregarding the probabilities) is 403. Because of the manner
in which the probabilities were contrived, it is intuitive that
the PMST would tend to "reverse” the internal nodes and the
leaf nodes of the MST. That such characteristics are reflected
in the spanning tree evolved by the GA algorithm is a credit to
the GA techniques.

9. Future work

One major contribution of this research is the observation that
the one to one correspondence between spanning trees and the
set of all strings of n-2 integers between | and n [5, 14, 16]
leads to a natural GA encoding of the PMST problem. A second
major contribution is the identification of crossover operators
and mutation operators that promote the evolution of good
near optimal solutions to the PMST problem.

Future research should verify that the results are scalable to
complete graphs with more nodes. Other efforts should show
that the techniques are still useful in case the graph is not
complete and, hence, there are infeasible chromosomes. In
cases where there are a small number of nodes and the
computation is possible, more work is needed to compare the
GA solution to the optimal PMST. Finally, more effort is
needed to identify additional applications where the desired
optimization is approximated by finding a probabilistic
minimum spanning tree.

Acknowledgements

This research has been supported by OCAST Grant AR2-004
and by Sun Microsystems Inc.

References:

[1] Abuali, F. N., Schoenefeld, D. A. and Wainwright, R. L.
"The Design of a Multipoint Line Topology for a
Communication Network Using Genetic Algorithms”, to
appear, Proceedings of the Seventh Oklahoma
Conference on Artificial Intelligence, November, 1993.

[2] Abuali, F. N., Schoenefeld, D. A. and Wainwright, R. L.,
"Terminal Assignment in a Communication Network

(3]

(4]

(5]

(6]

(71

(8]

(%1

[10]

[11]

(12]

(13]

[14]

[15]

[16]

(17]

Using Genetic Algorithms", to appear, Proceedings of
the Twenty Second Annual Computer Science
Conference, March, 1994

Bertsimas, D. J., "The Probabilistic Minimum Spanning
Tree Problem,” Networks, Volume 20: 245-275, 1990.

Blanton, J. L. and Wainwright, R. L. "Multiple Vehicle
Routing with Time and Capacity Constraints using
Genetic Algorithms”, Proceedings of the Fifth
International Conference on Genetic Algorithms (ICGA-
93), Stephanie Forrest, Editor, Morgan Kaufmann
Publisher, 1993, pp. 452-459.

Cayley, A., "A Theorem on trees,” Quarrerly Journal of
Mathematics, 23:376-378, 1889.

Corcoran, A. L. and Wainwright, R. L. "A Generic
Algorithm  for Packing in Three Dimensions”.
Proceedings of the 1992 ACM Symposium on Applied
Computing, March 1-3, 1992, pp. 1021-1030. ACM
Press.

Corcoran, A. L. and Wainwright, R. L., "LibGA: A User-
Friendly Workbench for Order-Based Genetic Algorithm
Research”, Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing. February. 14-16.
1993, pp. 111-117, ACM Press.

Davis, L. ed., Genetic Algorithms and Simulared
Annealing, Morgan Kaufmann Publisher, 1987.

Davis, L. ed., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

De Jong, K. A. and Spears, W. M.. "Using Genetic
Algorithms to Solve NP-Complete Problems”.
Proceedings of the Third International Conference on
Genetic Algorithms, June, 1989, pp. 124-132.

Garey, M. R. and Johnson. D. S.. Computers and

Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, 1979.
Goldberg, D. E., Genetic Algorithms in Search,

Optimization, and Machine Learning, Addison-Wesley,
1989.

Kershenbaum, A., Telecommunications Nerwork Design
Algorithms, McGraw-Hill, 1993.

Prufer, H., "Neuer beweis eines Satzes uber
Permutationen," Arch. Math. Phys., 27:742-744, 1918.

Rawlins, G., ed., Foundations of Genetic Algorithms,
Morgan Kaufmann Publishers, 1991.

Skiena, S., Implementing Discrete Mathematics,
Combinatorics and Graph Theory with Mathematica,
Addison Wesley, 1990.

Whitley, D., Starkweather, T, and Fuquat, D.,
"Scheduling Problems and Traveling Salesman: The
Genetic Edge Recombination Operator”, Proceedings of
the Third International Conference on Genetic
Algorithms, June, 1989.



&)
\CD ®\®/.
N
/®\
®

®

/ \®

Figure 1: An example spanning tree (ST) for
a complete graph on nine nodes.
The chromosome is (273272 1).

Figure 2: An active subtree of the ST in Fig 1.
The subtree corresponds to S = {2,4,5,6.8}.

Figure 3: A second example spanning tree for
a complete graph on nine nodes.
The chromosome is (331975 1).
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Figure 4: The first ST resulting from a single
point crossover of Fig | and Fig 3.
The chromosome is (273975 1).

Figure 5: The second ST resulting from a sin-
gle point crossover of Fig 1 and Fig 3.
The chromosome is (33127 21).

Figure 6: The ST resulting from a left circular
shift of four positions in Fig 1.
The chromosome is (721273 2).
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Figure 7: The ST resulting from exchanging
the third and sixth alleles in Fig 1.
The chromosome is (27227 3 1).

Figure 8: The ST resulting from exchanging
the third and seventh alleles in Fig 1.
The chromosome is (27 127 2 3).

Figure 9: The ST resulting from a mutation
on Fig 1.
The chromosome is (273172 1).

Figure 10: The classical MST for the

contrived data. Expected cost: 228.

Figure 11: The GA near optimal PMST [

Algorithm Expected Active Cost
Genetic Algorithm Test Cases

Crossover Mutation I II III IV \

Uniform None 54.9 | 63.8* | 60.3* |-70.8*% | 72.5
Alter Allele 53.3* | 61.0* | 57.5* | 63.6* | 61.5*
Swap 2 Alleles | 54.5 | 60.7* | 59.8* | 64.8* | 63.6*

Single Point | None 61.1 | 706 | 73.6 | 77.6° | 14.2
Alter Allele 52.3* | 61.1* | 60.3* | 73.4* | 64.3*

Swap 2 Alleles | 57.5 | 61.9*  65.9 | 71.5* | 67.5
Shift Left 1 None 110.9 | 113.5 | 113.6 | 127.9 | 111.0

Alter Allele 73.4 | 749 | 85.2 | 103.7 | 95.1

Swap 2 Alleles | 104.0 | 91.9 | 91.3 | 107.5 | 87.2
Alter Allele None 54.9 | 61.2* | 57.2 | 70.9*% | 62.3*
Alter Allele 52.5* | 61.1* | 57.0* | 69.5* | 61.0*
Swap 2 Alleles | 51.5* | 62.6* | 56.3* | 70.1* | 60.3*

Swap 2 Alleles | None 75.9 | 79.1 | 63.7 | 88.2 | 7T1.1
Alter Allele 51.5% | 61.9* | 60.3* | 64.0* | 63.2*

Swap 2 Alleles | 67.3 | 75.7 | 64.4 | 79.1* | 73.4

Greedy

[54.1 [67.6 | 62.6 | 87.1 | 66.9 |

for contrived data. Expected cost: 210.

Table 1: PMST problem, 20 nodes, type one data set.




