Using Java to Develop Web Based Tutorials
David Cole

Roger Wainwright

Dale Schoenefeld

Department of Mathematics and Computer Science

The University of Tulsa

{cole, rogerw, dschoen}@euler.mcs.utulsa.edu

Abstract

This paper presents the use of Java applets acting as a web-based interface to existing, platform dependent software tools. We present an example application called GAWebTutor which was constructed from a comprehensive genetic algorithm package and web-based Java components. In effect, we packaged an interactive genetic algorithms tutorial and made it available to anyone on the WWW. Furthermore, by building a GUI front end to an existing application in Java, we leveraged browser technology to overcome platform compatibility problems. A blending of Java and platform dependent code can successfully create user friendly, portable, more versatile applications that take full advantage of all available software components. Using our approach, educators can make their educational programs or other software tools available to anyone through the WWW.

1. Introduction

As an example of using the internet to provide educational software through the World Wide Web (WWW), we present GAWebTutor. It is both a web-based teaching tool and a genetic algorithms tutorial. To assist in developing a full appreciation of the system, both the advantages of web-based approaches and a summary of genetic algorithms follow.

1.1 Web Based Teaching Tools

The growth of the WWW and the development of the Java programming language offer unique educational opportunities. The WWW allows for an unparalleled level of connectivity to university networks. Students can connect to a network from virtually any computer that possesses either a direct internet connection or dial

SIGSCE 98 Atlanta, GA

ACM Copyright 1998 0-89791-994-7/98/

up telephone access. Additionally, Java is a platform independent, interpreted programming language. Small Java programs called applets can migrate across a network and execute inside a web browser that contains a Java interpreter. Educational tools can be built in Java, placed in a web server, and made available to anyone with a Java enabled browser. With such a browser, already ported to the user’s platform and containing its own Java interpreter, the problems of cross platform compatibility disappear. Applet security risks to users are small; Java applets have severe restrictions placed on their behavior to ensure that their actions are benevolent. Until recently educational programs were only locally available to students at a particular site. Now educators can make educational programs available to anyone on the WWW and the only required skill is knowing how to use a web browser.

This paper reports our trials, tribulations and, finally, success in using Java applets to interface between an extensive genetic algorithm package and a user with a web browser. We packaged an interactive GA tutorial and made it available to anyone on the WWW. Prior to this work, it was necessary for us to ship all of the tutorial code to a user and have them run the tutorial locally as a stand alone application. What we learned from this process can be applied to many other educational software packages by other educators.

1.2 Genetic Algorithms

Genetic algorithms search through a solution space by mimicking the biological process of “survival of the fittest.” A genetic algorithm operates on a collection of candidate solutions. Each solution is encoded as a finite length string, typically a string of bits or integers. Each element in the string is called a gene, while the string itself is called a chromosome. Each chromosome corresponds to a candidate solution.

A fitness function is applied to each chromosome, determining how close each candidate solution comes to an optimal solution. Chromosomes are then probabilistically selected, based on their fitness ratings. Genetic recombination operators take the selected chromosomes as parents and produce children. These are new solutions based on the genetic material of the previous pool. Mutation operators are applied to the new generation of solutions which occasionally alter genes in a few of the chromosomes, causing new areas of the search space to be investigated. Selection, recombination and mutation are then applied to the newly created pool to further evolve the population. This process continues repeatedly until the population converges. Prince et al. [6] discuss the domains in which genetic algorithms have been successfully applied as effective problem solving strategies.

2. Previous Work

Evolutionary computing is an active area of research in our department. In order to pursue research in this area, a suite of software tools has been developed. LibGA[1] is a library of C-routines that allows a wide variety of experiments using genetic algorithms to be run. It possesses a variety of selection methods, a rich set of crossover operators and several different mutation operators. HYPERGEN [5] is a collection of library routines that allows genetic algorithms to be run on a parallel computing platform. The system allows several processors to evolve their own populations of candidate solutions. These “islands” occasionally exchange genetic material, allowing each pool to investigate new areas of the search space. GATutor [6] is a GUI-based genetic algorithm tutorial package written in X-Windows/Motif. It allows for the tutorial investigation of either the Traveling Salesman Problem or the Set Covering Problem. It hides its implementation code behind a GUI interface, allowing the user to select various parameters for the genetic algorithm using a point-and-click strategy. GATutor was developed to allow users with very limited computing experience to investigate the nature and abilities of genetic algorithms.

Other researchers have explored both the uses of Java in computer science education and a GUI interface as a means of exploring various educational topics. Ross [7] has developed applets to assist in teaching the theory of computing and is currently working on a Java port for an extensive program, algorithm and concept animation system. Ross’s work is based on the belief that the WWW provides a universal platform through which educational software can be best distributed. Weiss [9] has been actively using Java as the programming language to teach a course in Data Structures with a great deal of success. Students develop their own applets as class projects to demonstrate binary search algorithms, operator precedence parsing algorithms, binary search tree structures, linear and quadratic probing of hash tables, and binary heap operations. Tinoco et al. [8] have developed an on-line, adaptive testing system using web browsers, common gateway interface (cgi) scripts, and a specialized markup language which can be compiled into HTML. The system is designed to allow educators the ability to distribute tests and quizzes on which students may receive immediate feedback through automated grading. The system also allows students to access on-line course information to understand and rectify their incorrect information models. Jackson and Fovargue [4] developed a genetic algorithm tutorial system using algorithm animation technology. Using a GUI interface, a user can witness the changing state of a genetic algorithm as it evolves. Animation scenes are built by associating points in the program code with high-level library routines designed to manipulate graphical objects. Their system was developed under X-Windows. Our GA tutorial implementation is different in philosophy from Jackson and Fovargue [4]. This is discussed in the next section.

3. Motivation

As part of our research in providing web-based educational tools, the authors decided to develop a genetic algorithm tutorial package that would be both graphical and portable. Both LibGA and HYPERGEN are console-based applications. They require the user to write a driver program in C and compile the source code in order to run the genetic algorithm. Although GATutor is a graphical application, making the application available to others outside our university has proven problematic. Interested users must not only posses all the source code for GATutor but the code for LibGA as well. The system must be recompiled on a Unix-based machine in order to be used, a process that has not always been successful for users. Additionally, the underlying implementation of GATutor relies on Unix system calls that may have different default behaviors in differing releases of the operating system, causing GATutor to behave erratically. It should be noted that Jackson and Fovargue’s [4] genetic algorithm animation system also relies on platform dependent X-Windows/Unix code. Although they did not report any difficulties with the animation system itself, successful distribution of their code requires a Unix platform. We decided to develop a tutorial that would be easily accessible to users both on and off campus (in fact, to anyone on the WWW) and would run on a variety of different platforms.

We feel that GUI interfaces make user interaction with software tools easier and more intuitive. Java has a built in GUI tool kit called the AWT. The AWT is a collection of classes that allow the programmer to build applications and applets from basic graphical components. Furthermore, by building a GUI front end to an existing application in Java, we could leverage browser technology to overcome platform compatibility problems.

We worked on the new system to make as much use of pre-existing library code as possible without sacrificing portability. As a result, we used Java’s ability to call routines written in C. Other research that attempts to build computer science educational tools (such as [4]) requires that all code be written in the same language. In our case we have a 4 year old, well-tested, extensively used GA package written in C that we wanted to use as the engine for the tutorial and which we did not want to rewrite in Java. A blending of Java and native code can successfully create user friendly, portable, versatile applications that take full advantage of all available software components. We were greatly assisted in our development efforts by two excellent Java programming references [2, 3]. To our knowledge, this implementation is the first of this kind we have found.

4. Implementation

Our application provides a Java-built front end to the genetic algorithm code already available in LibGA.

Figure 1: Client-Server Model for GAWebTutor’s Java Implementation
We use a modified client-server model, depicted in Figure 1. The user connects to our network using a standard, Java-enabled browser, such as Netscape Navigator or Microsoft Internet Explorer. The browser loads a web page in which a reference to the GAWebTutor applet has been embedded. The applet code migrates across the internet from the web server to the client browser where it is interpreted by the Java Virtual Machine. The client user enters parameter information through standard GUI components provided in the applet, such as drop-down lists, text boxes, etc. Underlying the applet interface is client code which connects to a concurrent Java server running on our local network. The client user submits information to the server using the “run” button on the interface.

The GAWebTutor server was written in Java and runs on our departmental network. The server collects the parameter information from the client and in turn calls a method that acts as a wrapper. The wrapper is termed a “native method” in Java, due to the fact that its implementation is in another programming language. A call to the wrapper is essentially a call into a shared library which holds the signature of the wrapper, converted to C, and the native C code implementation. Essentially, the native method provides a pseudonym by which a corresponding LibGA routine can be accessed. Our goal is to use a native C implementation to provide the functionality for a Java method.

Thus, when the native method is called, corresponding code, written in C, loads data structures with the GA parameter information from the applet and calls the existing LibGA routines that collectively provide the execution of the genetic algorithm. LibGA returns results to the calling C function, which places those results into a shared data structure that was passed into the C code from the Java server. When the native C code implementation finishes its execution, control is returned to the Java server, which then sends the results back to the client applet. The applet then displays the results.

Work responsibilities are clearly divided between client and server. It is the client’s responsibility to collect parameter information from the user and to display the results of the run in a meaningful format. Figure 2 depicts an example screen from GAWebTutor showing the tutorial parameters the user can set (top half) and example output in text form (lower left), and output in graphical form (lower right).

Currently, the applet only allows the user to investigate the traveling salesman problem. We allow the user to choose one of several standard data sets for the problem. Due to security restrictions placed on applet behavior, the user cannot provide his/her own data for the applet (Java applets are not allowed to read from or write to a local disk. However, this restriction will be partially lifted in future releases of the Java Development Kit [10]). Currently, the user sets a variety of parameters for the GA, including the mode of the GA (generational or steady state), the random seed for the population pool, the maximum number of generations the GA is to run without convergence, the generation gap, the pool size, the replacement method (append, by rank, first weaker or weakest), etc. Once the user clicks on the “run” button the client waits for results. Once received, the client displays the contents of the best chromosome and its fitness rating for each generation of the GA. Additionally, a graphical illustration of the tour represented by the best solution from each population is displayed for the user. The chromosomes and tour graphics are displayed serially to reinforce the idea of an evolving solution set. The final tour of the last generation changes color to indicate to the user that all results have been displayed.

[image: image1.png]GA Tutor - Microsoft Internet Explorer
Fie Edt View Go Favores Help

Genetic Algorithm Tutorial

Prablem Parameters
Prablem: | T5P | Datasget 10 H

A Parameters

Made: | generational | Population Seed: |1

Num of Generations: | 100 | Generation Gap: [°0
Pool size: [100 | Elsm: | 42 |
Rieplacement Method: | 3PPend |

Selecton Metha: ['2utle B Selecton Bias: 1
Crassaver Method: [P = Crossover Rate: [0
Mutation Methadt | 2P B Mutaton Rate: (00

GATulor Commands

Bun
[pest throm (Gen 29): (36
[Best throm (Gen 30): (36
[pest throm (Gen 31): (36
[pest thron (Gen 32): (3 6
[pest thron (Gen 33): (36
[Best thron (Gen 34): (36
[Best thron (Gen 35): (36
[pest thron (Gen 36): (36
[pest thron (Gen 37): (36
[Best thron (Gen 38): (3 6
[run Completea

KT —

Figure 2: GAWebTutor Interface

Our Java server has the responsibility of collecting input for the GA from the client, running the native C code, and sending results back to the client. It makes no attempt to interpret the data for the user. It simply runs the user’s requests on a machine located on our network. Thus, the client-side burden is decreased.

Essentially, the client-server architecture provides a structure on which to build an integrated application out of existing components. The legacy software (LibGA) was previously written in a language currently supported by Java’s native method utility functions [10]. Such being the case, the integration of native C code with a Java GUI front end became reasonably straight forward. However, the Java language itself places no restriction on the language used to implement native code. Any language can be used to develop native methods, so long as a strategy exists to create a shared library which holds the native methods. Java code can then be written to load the library and use the functions thus provided.

It is the client-server architecture that also enables educators to provide platform independent access to developed tools. Through the use of native methods, educators can provide an effective bridge to existing code. By using Java to provide the interface, users may access the code easily with web browsers. By using Java to provide the server that links the interface to existing tools, an educator can take advantage of the extensive class libraries designed to allow for easy communication between Java programs over the internet. Thus, there is little trouble in developing code that allows an interface to communicate parameter information to a server process. The server can then, in turn, use native methods to access developed tools.

The most difficult implementation problems that we encountered appeared on the server side of the application. The first problem to overcome was determining how to send the results of the C-based GA back to the Java server. It was decided to use multi-dimensional arrays to store the results. For our Java development we used JDK 1.0.2[10] and it provides utility functions that allow a developer to work with the same instance of a data structure from both Java and native C code. Hence, memory can be allocated for an array during the execution of the Java server and be accessible to the naive C implementation of LibGA.

Essentially, the array that holds the GA’s results is sent as a Java object reference to native C code through the wrapper function. The reference to the object’s memory block is called a handle. Once the handle is passed to the C code, it can be used to dereference the object using utility functions provided by the JDK. Depending upon the object, the utility functions provide either the ability to create equivalent data structures in C or yield a pointer to the memory originally allocated for the object by the Java Virtual Machine. Through this process, Java objects can be utilized by native code. Thus, it is possible to make use of the same object instances in both Java and C.

We have one caveat for educators that wish to employ our client-server strategy with tools developed for the Unix operating system. Unix provides developers with a form of interprocess communication known as signals. LibGA was developed to make use of signals and sets its own signal handling routines when it executes. As it turns out, the Java Virtual Machine as implemented for Unix is sensitive to changes in the signal table. Since LibGA altered the signal handlers, the underlying Java Runtime System performed erratically. The effect on the server, which ran as a Java process within its own virtual machine, was dramatic. In fact, it was consistently killed by the operating system until we realized that we needed to disable the signal handlers in LibGA so that the underlying Java Virtual Machine implementation could continue to operate properly.

The results of our implementation have been very positive. The communication time between client and server is quite reasonable. The rate at which the client displays the results is dependent on the user’s machine, but when tested on a Pentium-75 PC running Windows95, the display rate seemed adequate. Although genetic algorithms can be computationally expensive to run, the GA’s execution requires between 15 and 62 seconds (for the TSP 30 and TSP 105 city data sets respectively) when run on departmental web server.

5. Future Work and Conclusions

We plan on making several enhancements to the current system. We would like the user to be able to generate random TSP data sets for the genetic algorithm to run. Additionally, we would like to add the Set Covering Problem (SCP) in a separate interface to give the user more variety in his/her choice of problems to investigate. The TSP is an order based GA problem using a chromosome that is a permutation of integers; the SCP uses a bit string chromosome. We would also like to implement a step mode, so that the user can control when each generation’s best solution is displayed.

Java’s graphical tool kit is currently rather primitive. However, as Java matures as a language and more third party implementations become available, better GUI tools should be capable of easing the programming burden when designing graphical applications in Java. Additionally, Sun Microsystem’s latest JDK (version 1.1.3) supports object serialization, which allows communicating Java processes to pass full objects on the connecting data streams. Our work predated JDK version 1.1.3. Additionally, using the serialization features would require browsers capable of interpreting JDK 1.1.3 bytecode for the client applet to run correctly (Navigator 3.x and Internet Explorer 3.x only support code generated by JDK 1.0.x). However, some of our client-server code would have been appreciably simplified with the ability to send objects along streams.

The work presented here will be very helpful to anyone developing interactive educational tools on the Internet. Our model can be adapted to provide a web-based interface for any platform-dependent application that lacks GUI components for input and output. We believe that such web-based educational tools perform a valuable service, not only in illustrating concepts in computer science education, but in making full use of limited computing resources. Our web location for our GA tutorial is http://tara.mcs.utulsa.edu/gat/gat.html.
6. References

[1]
A.L. Corcoran and R.L. Wainwright, “Using LibGA to Develop Genetic Algorithms for Combinatorial Optimization Problems,” Lance Chambers, Editor, Practical Handbook of Genetic Algorithms, Applications Vol. 1, pp. 143-172, CRC Press, 1995.

[2]
G. Cornell and C.S. Horstman, Core Java, 2nd Edition. Prentice Hall, NJ., 1997.

[3]
D. Flanagan, Java in a Nutshell. O’Reilly & Associates, CA., 1996.

[4]
D. Jackson and A. Fovargue, “The Use of Animation to Explain Genetic Algorithms”, Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (SIGSCE Bulletin), Vol. 29, Num. 1, March 1997, pp. 243-247.

[5]
L.R. Knight and R.L. Wainwright, “HYPERGEN: A Distributed Genetic Algorithm on a Hypercube,” Proceedings of the 1992 Scaleable High Performance Computing Conference, SHPCC ’92, Williamsburg, VA., April 26-29, 1992.

[6]
C. Prince, R.L. Wainwright, D.A. Schoenefeld, and Travis Tull, “GATutor: A Graphical Tutorial System for Genetic Algorithms,” SIGCSE Bulletin Vol. 26, No. 1, March 1994, pp. 203-207.

[7]
R.J. Ross, “WebLab! A Universal and Interactive Teaching, Learning, and Laboratory Environment for the WWW,” Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (SIGSCE Bulletin), Vol. 29, Num. 1, March 1997, pp. 199-203.

[8]
L.C. Tinoco, D. Barnette, and E. A. Fox, “Online Evaluation in WWW-based Courseware”, Twenty-eighth SIGCSE Technical Symposium on ComputerScience Education (SIGSCE Bulletin), Vol. 29, Num. 1, March 1997, pp. 194-198.

[9]
M.A. Weiss, “Experiences Teaching Data Structures with Java”, Twenty-eighth SIGCSE Technical Symposium on Computer Science Education (SIGSCE Bulletin), Vol. 29, Num. 1, March 1997, pp. 164-168.

[10]
http://www.javasoft.com/products/jdk/1.0.2/
_934803699.ppt

