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Abstract—The solution of linear systems of equations using a 2-dimensional x-projection method is
presented. At each step of the iterative process the approximate solution vector is projected to a point in
the intersection of two of the hyperplanes of the linear system. It is shown that nonsingularity of the
coefficient matrix is the only requirement for convergence. An algorithm is presented to select pairs of
hyperplanes to project the approximate solution vector at each step. The algorithm is quasi-optimal since
the hyperplanes, which are determined by the row vectors of the coefficient matrix, are selected a priori.
This is shown to significantly reduce the number of cycles required for convergence. We observe that in
some cases the ratio of the change vectors of the approximate solution vectors after some number of cycles
becomes a constant. Thus, when this occurs a simple geometric acceleration can be applied to calculate the
solution directly. This is shown to significantly reduce the number of cycles required for convergence and
improves the accuracy of the solution by orders of magnitude. The 2-dimensional x-projection method was
tested against other well known iterative algorithms over a wide range of linear systems and proved
superior (less C.P.U. time required) in nearly every case.

1. INTRODUCTION

The purpose of this paper is to develop a class of projection methods called x-projection
methods for solving the equation

Ax=b (1.1)

when A is a nonsingular matrix of order n and x and b are n-vectors. In this paper we also
develop some acceleration techniques for the class of x-projection methods. The paper is
divided into six sections. In Section 2 the notion of projection methods for solving systems of
linear equations is reviewed and two classes of projection methods called r-projection and
x-projection methods are defined. In Section 3 a 2-dimensional x-projection method is
developed and in Section 4 a hyperplane selection criteria is developed to accelerate the rate of
convergence of the 2-dimensional x-projection method. The major advantage of the x-projec-
tion methods over the traditional r-projection methods is that the ratio of the changes to the
approximate solution vectors from cycle to cycle become a scalar multiple of each other.
Hence, after some number of iterations the process can be stopped and the solution calculated
directly. This notion is also presented in Section 4. Test cases and comparisons are presented in
Section 5. Concluding remarks are presented in Section 6 followed by a program listing of the
2-dimensional x-projection method using a quasi-optimal hyperplane selection criteria and
geometric acceleration.

2. BASIC CONCEPTS OF PROJECTION METHODS

Consider the following non-stationary iterative scheme for solving (1.1) that makes suc-
cessive changes to the components of a starting approximation vector, x°

=+ gt 2.1

where a is a scalar and w* is an n-vector. Various algorithms come from different choices of
a, and w”. Define the error vector, r* after the kth step of (2.1) as

r*=b - Ax*.
59



60 R. L. WAINWRIGHT

Consider the first possibility of choosing a, and w* to force the residual vector element, r¥,
to zero at each iterative step. This gives rise to a class of methods called relaxation methods.
Let a* = c(r/(a;, a;)) and w* = € where (a;, a;) is the inner product of the ith column of A and ¢’ is
the ith column of the unit matrix, then (2.1) becomes

l=xkt+e ¥ ¢ ' (2:2)
(ais at')

where ¢ is the relaxation parameter. For ¢ = 1 (2.2) yields the method of Gauss-Seidel and for
¢# 1 we have an over relaxation or under relaxation method.

A. r-projection methods
Consider a class of methods called gradient methods which minimizes at each step of (2.1),
the following quadratic form
(r*, r*) = (b — Ax*, b — Ax"). (2.3)

For the most substantial reduction of (2.3), that is to minimize (%, r*) with respect to a; we
choose

_ (Ae®, 1Y)
" TAa”, 40 &9

and w* is as yet unspecified. Now if o* is chosen as the vector of steepest descent i.e.,

. 3(?‘“1 rk+1)
e x;
then (2.1) becomes the method of steepest descent or sometimes called the gradient method. If
however, »* is choosen as ¢’ then (2.1) becomes

X
™ a)

xk+1=xk+( E) l')el
(a;, a;)

which changes just one component, (the ith component) at each step of the iterative scheme.
Geometrically, at each step of the iterative process the residual vector, r¥, is projected onto a;
and the new residual, r**', is orthogonal to a, We call this a 1-dimensional r-projection method
since r* is being projected onto one of the column vectors of A. This method was initially
developed by A. de la Garza[2] and rediscovered by Keller[6]. Fox[1,205-206] also gives a
development of this method.

Let w*=e,+e,+ - e, then an extention of the general scheme (2.1) to m-dimensions
yields the m-dimensional r-projection method

X*=x*+dke + dyife, - +d ke,

where xy, X,, X3,..., X, are m arbitrary components of the approximate solution vector. df is
the change to the ith component of x* at the kth iteration. Geometrically, at each step r* is
projected onto a subspace determined by m of the column vectors of A and the new residual,
r**!, is orthogonal to this subspace. This is geometrically described by Householder[5]. The
changes to m components of the approximate solution vector at the kth step of an m-
dimensional r-projection method are given as the solution to the following symmetric system of
m linear equations

andi* + apdy* + apdt - - + a1yt = (r*, ay)
and* + apd* + apds* - - -+ Qame” = (7%, G))

am,ldlk + am,Zde + am,3d3k st am,mdmk = (rk, am)
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where a; = (a;, a;). A proof of this can be found in Wainwright[10]. The most significant
characteristic of the r-projection class of methods is that nonsingularity of the coefficient
matrix is sufficient for convergence[6). The rate of convergence, however, is slow and various
techniques for increasing the rate of convergence can be found in [3, 8,9, 11].

B. x-projection methods

Pizer[7, 162-168] gives a detailed development with geometrical interpretation and program
listing for what we call the l-dimensional x-projection method. He states this method was
discovered by Kaczmarz and rediscovered by Levy. Briefly the method is as follows:

Each equation of (1.1) (i.e. (a, x) = b; where a' is the ith row of A) geometrically defines an

(n — 1)-dimensional hyperplane called the ith hyperplane which is orthogonal to a‘. The solution
vector is the point in which the n hyperplanes of (1.1) intersect. The iterative process begins
with an arbitrary point, x°, then moves it onto hyperplane 1 in a direction orthogonal to it. It
then moves to hyperplane 2 in a direction orthogonal to it, and so on to hyperplane n in a
direction orthogonal to it. Then the process starts over by moving to hyperplane 1 in a direction
orthogonal to it, to hyperplane 2 in a direction orthogonal to it and so on. Pizer proves that this
process always converges for arbitrary x° assuming the nonsingularity of A. He shows when we
move to hyperplane i + 1 from hyperplane i (solve the (i + 1)th equation) we are moving closer
to the intersection of all of the hyperplanes (the solution). Algebraically the projection step of
moving from the ith hyperplane to the (i + 1)th hyperplane is written

(bi+1—(ﬂi+]sxf))

i+1
(@ a'n a”.
b

Xt = xi 4

To save time in the iteration we scale each equation according to the Euclidean norm so that
(a™*', a™*") =1, then the projection step becomes

x*=x"4 (b — (@™, x))a™". (2.5)

This is a total step method in that every component of the approximate solution vector is
altered at each step. If we apply (2.5) successively for i=0,1,2,...,n—1 the projections
constitute a full cycle. So that we can represent successive cycles we define x™*™*! as the
result of the projection to hyperplane i+ 1 from hyperplane i in the (m + I)th cycle (m =0
initially). Now the projection step (2.5) can be rewritten as

= x* +(b; - (@', x"))a’
or equivalently

xk = xF 4 rFa’ (2.6)

where i = the residue of k +1 modulo n. Thus in the general scheme (2.1) the 1-dimensional
x-projection method, (2.6), is obtained when a; = r* and * = a'.

3, 2-DIMENSIONAL x-PROJECTION METHOD

In the previous section we developed from (2.1) a 1-dimensional r-projection method
(residual vector projected onto one of the columns of A) and the 1-dimensional x-projection
method (the approximate solution vector projected onto one (n — 1)-dimensional hyperplane).
Considerable work has been done with higher dimensional r-projection methods and they have
been shown to be competitive to other well known iterative methods[3, 8-11]. To the author’s
knowledge higher dimensional x-projection methods have not been explored. In this section
the 2-dimensional x-projection method is developed. Higher dimensional x-projection methods
can be easily developed in a similar manner.

Consider the following non-stationary iterative scheme for solving (1.1) that makes suc-
cessive changes to the components of a starting vector, x°

xk+1 = xk + akcuk + 3&‘)’t
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where o and B; are scalars and »* and y* are n-vectors. This is an extension of the general
scheme (2.1). For the 2-dimensional x-projection method the iterative process begins with an
arbitrary point, x°, then moves it onto the intersection of hyperplanes 1 and 2 in a direction
orthogonal to both of them. It then moves to the intersection of hyperplanes 3 and 4 in a
direction orthogonal to both of them, and so on to the intersection of hyperplanes n —1and n ina
direction orthogonal to both of them. Then the process starts over by moving to the intersection
of hyperplanes 1 and 2 in a direction orthogonal to both of them, then to hyperplanes 3 and 4 in
a direction orthogonal to both of them and so on. More precisely, if n is even the hyperplanes
are paired (1,2), (3,4),...,(n—1,n) and if n is odd the hyperplanes are paired (1, 2), (3, 4), .. .,
(n=2,n—-1),(n—-1,n). Let x* be a vector to a point in the intersection of the ith and (i + 1)th
hyperplanes. Let x**' be the vector to the point in the intersection of the (i +2)th and (i + 3)th
hyperplanes which is reached by moving from x* in a direction orthogonal to both the (i + 2)th
and (i + 3)th hyperplanes. Let y be any vector to the point in the intersection of hyperplanes
i+2and i+3(y# x**"). Then the change in the approximate solution vector, x**! - x*, will be
orthogonal to x**'—y, which lies in the intersection of the (i +2)th and (i + 3)th hyperplanes:

(= xb), (M - y) =0 (3.1

Since both x**' and y define points in the intersection of the (i+2)th and (i +3)th
hyperplanes, both satisfy the (i + 2)th and (i + 3)th equations of (1.1):

((IHZ, xk+l) i bl‘+2

(3.2
(@5 y)= b
(al-+3, xk+1) - b:’+3
(™, ¥) = biss G
thus
(@ (x*" = y)=0 (3.4)
and
(@™, (x**' = y)=0. (3.5)

Therefore, a linear combination of a"? and a™** will be orthogonal to x**' - y for any y to the
point in the intersection of hyperplanes i+2 and i+ 3 (y can range over n —2 dimensions).
Thus it follows from (3.1), (3.4) and (3.5) that a linear combination of a**2 and a*** will be in the
same direction as x**' — x*, so, for scalars a and B,

= xk+ aa™? + Ba', (3.6)
By taking the inner products of a’*? with (3.6) and a*** with (3.6) producing
(ai+2, xk+]) — (ai+2, (xk + aai+2+ Bai+3))
and

(a"”,x"“) L (ai+3, (xk+ a,a“z+ Baiﬂ))

respectively, and then using (3.2) and (3.3) we obtain the following symmetric linear system of
two equations and two unknowns:

a(ﬂi+2, ai+2)+ﬁ(ai+2, al'+3) = bi+2_ (aHZ, xk)

i+3i+2 i+3 i3y _ i3k G.7
a(@™, a™)+ B(a™, a"’) = bz — (', x*).

Solving (3.7) for « and 8 we get



A class of x-projection methods for solving systems of linear equations 63

[(@" x*) = bisl(@™?, a™) - [(a™2, x*) - byy]

a = 1- (a’+2, a|+3)2 (3 8)
— {(ai+29 xk) - bi+2](ai+2: ai+3) ] [(al'+3, xk) - bi+3] .
B - 1- (al+2, a:+3}2 o

Thus the 2-dimensional x-projection method is defined by (3.6) where o and B are defined in
(3.8).

Tueorem 3.1. A single step of a 2-dimensional x-projection method projecting x*, which defines
a point in the intersection of hyperplanes i —2 and i — 1, to x**! which defines a point in the
intersection of hyperplanes i and i + 1 in a direction orthogonal to hyperplanes i and i + 1, is
equivalent to repeated 1-dimensional x-projection steps projecting the approximate solution
vector back and forth to points in the ith and (i + Dth hyperplanes until the change between
two successive approximate solution vectors is zero.
Proof. Given x* in a 1-dimensional x-projection scheme we generate x**' as a vector to a
point in the ith hyperplane by the following 1-dimensional x-projection scheme
=k 4 cpal (3.9)
where
Cip = b,-—(a",x"). (310)

Next x**? is generated as a vector to a point in the (i + 1)th hyperplane by the same process
producing

=M o na™ (.11
In general
Cisjk+2] = Cijraj = by — (ais xk+2j)

and

Cit142k+142f = Citiks142 = Djyy — (am, XHH”)
forj=0,1,2,3,....

Substituting (3.9) in (3.11) we obtain
Xk+2 = .Ik + c;kai + c;+,_kai+l - c;k(a", a"H)a"“. (312)

Continuing, x*** is generated as a vector to a point in the ith hyperplane and x*** as a vector to
a point in the (i + 1)th hyperplane:

KBk o oa (3.13)

xith= 9 o st (3.14)
Substituting (3.12) and (3.13) in (3.14), it can be rewritten in terms of x*.
xk+4 = xk + [Cl’k s ci+].k(ais ai+i)+ cik(aj, ai+l)2]a£'
ek = culd’, a™* + ¢y 4@’ a2 - cula’, a™ Y™, (3.15)

Continuing in this recurrsive manner by projécting back and forth between hyperplanes i and
i +1 an infinite number of times we produce

lim x** = x* +[cy + cala’, a™"V + cula’, ') + cu(a’, a™ ) + - - -]af

- —leinnla’, a™) + cipula’, a™ 'y + Ciapla' a™y + - Ja'
e+ Cnla’, a™ P + Ciriila', a™ )+ cpalal, @™o+ - - Ja™!
—[cik(ajs ai+!)+cl_k(ai’ai+l)3+cl_k(a£,af+l)5+_ . .]ai+l' (3]6)

CAMWA Vol. 5, No. I—E
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We scale each equation according to the Euclidean norm so that (a,a’)=1. Using the
Cauchy-Schwarz inequality we know

l(ai,ai+l)|2£(ai, ‘:li')(ai-v-l‘ ai+1}= 1.

In fact |(a’,a”")=1 only when a™'=a' which is impossible for a nonsingular coefficient
matrix; thus |(a’, a"*")]* < 1. We can now apply the geometric series

l+g+q*+q*+---= -1<g<l1

g B
1-q°
where g = (a’, a™*")* to (3.16):

Cix — C,'+1’k(ﬂi, aH—l) i Civik — cl‘k(al> ai-H) i+1

= k+r= k + .]7
lim x x4+ miy a =@, a"y a'tl, (3.17)

tsco 1-(a',a

Finally, substituting for c; and ¢;; using (3.10), (3.17) becomes identically the equation for the
2-dimensional x-projection scheme as defined in (3.6) and (3.8). This is the desired result.

TueoreMm 3.2. The 2-dimensional x-projection method for solving linear systems is convergent
provided the coefficient matrix is nonsingular.

Proof. The proof follows immediately from theorem 3.1. The 2-dimensional x-projection
method is based on repeated applications of the 1-dimensional x-projection method which is
always convergent. The Pythagorean theorem guarantees that we move closer to the inter-
section of two hyperplanes as we project back and forth between them in directions orthogonal
to them. In fact it can be shown that we move closer to the intersection of all of the
hyperplanes[7].

4. ACCELERATION TECHNIQUES FOR THE 2-DIMENSIONAL
x-PROJECTION METHOD

A. Selection of projection hyperplanes

The x-projection class of methods do not minimize (r*, r*) at each step. Thus at each step
the approximate solution vector is projected closer to the intersection of all of the hyperplanes
defined by the linear system but does guarantee to decrease the length of the residual vector. It
is for this reason that for some systems the 1-dimensional x-projection method converges faster
than the 2-dimensional x-projection and for other systems the reverse is true. It has been the
author’s experience, however, for random sequences of hyperplanes that the 2-dimensional
x-projection method in general converges slightly faster (less C.P.U. time) than the 1-
dimensional x-projection method.

The x-projection class of methods is typical of most projection methods in that the rate of
convergence is very slow. One would like to be able to select a priori, a sequence of pairs of
projection hyperplanes which guarantees most rapid convergence for a system of linear
equations. One criterion for selecting an optimal sequence of projections is to observe how the
residual at any step is related to the hyperplanes determined by two of the rows of A. In
particular one would like to reduce the length of the residual vector as much as possible. Let x*
be a vector to a point in the intersection of hyperplanes p and g and we move x* to x**' along a
direction orthogonal to hyperplanes i and j using a 2-dimensional x-projection method. Thus

= x*+ aa’ + Ba’
and
(rk+!‘ I’_k+l) = (b _ Axk+l, bh— Axk+!)
or equivalently
(P, Y = (% %) = 2a(F%, Aa') —2B(r%, Aa’) + e*(Ad’, Aa’) +2¢B(Ad’, Ad’) + B(Ad’, Ad)).
4.1
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Substituting (3.8) for a and B and cos 6; for (a’, a’) (since (a’,a’) = (a’,a’) = 1), (4.1) can be
rewritten as

(rk‘ rk}_(riH-I’ r}c+l)'= Cj‘j[Rji . Sjr']

where
i 1
Ly 1—cos® 8;’
R = 2r¥ — rf cos 8,)(r*, Aa’) +2(r — r cos 8;)(r, Aa’)
~and

i 1 kg 24 i
Sj —ml(n 1y cos ;) (Aa’, Aa')

+2(r — rf* cos 0;)(r* — 1 cos 8;)(Aa’, Aa’) + (r} — r¥ cos 0;)(Ad’, Aa')].

To select a single step optimal method (i.e. one which would give a minimum value for
(r**1, ¥**1)i, j are chosen such that C/[R/ — S] is a maximum. We observe that R/ — S/ -0 as
r*>@ (@ is the zero vector). In fact S/ will approach zero at a faster rate than R; since
R =0(rf +r}) and S = 0(r* + r)>. However, since Cj = 1, C; dominates the product C;[R/ —
S/] as r*—@. Therefore a quasi-optimal selection criteria for the 2-dimensional x-projection
method is to select pairs of rows of A in descending order of the values of C/ (i,j=
1,2,...,n). All ¢} (i,j=1,2,...,n) are computed initially and a stationary algorithm is
obtained by selecting a priori pairs of rows of A based on the C/ values such that each row is
used at least once and at most one row is used twice in each cycle. The largest C;' results from
the two most parallel rows in A. Note in passing, for the 1-dimensional x-projection method
that

(7, ) — (7, Y = r(Aa’, Aa’) + 2r(Aad’, )

which is not in a convenient form for determining in a like manner an a priori optimal sequence
of 1-dimensional projections.

B. Acceleration using geometric series

Probably the most significant characteristic of the x-projection class of methods is that the
ratio of the change vectors of the approximate solution vector as r*—@ converges to a
constant. That is, at some cycle, m, the solution can be written

x=xm +Axm+i+Axm+2+_ .., (Axi+1=x|'+l_xl')

where (Ax**'/Ax’) = pforall i > m,(p < 1)and m, m + 1, m + 2, .. . represents successive cycles of -
an x-projection method. Then the solution can be calculated directly:

Axrrﬁl
1-p°

x=x"+

This result will not be proven. For some linear systems the iterative process converges before
the mth cycle has been reached (i.e. before the value of p converges). The author has noticed
this in general for linear systems where the r-projection and x-projection methods converge
very rapidly such as diagonally dominant systems and unfortunately for some extremely
ill-conditioned linear systems like Hilbert matrices. Thus the geometric acceleration may not
always be able to be applied.

5. TEST PROBLEMS AND COMPARISONS

In this section six programs are compared. Each program is identified in the comparison
tables by the following notation:
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(1) G-S s the single step method of Gauss-Seidel.

(2) 1-X  is the 1-dimensional x-projection method as described by Pizer[7].

(3) 1-XA is the l-dimensional x-projection method where if possible a geometric ac-
celeration is used.

(4) 2-X  is the 2-dimensional x-projection method with quasi-optimal hyperplane selection
as described in section 3.

(5) 2-XA is the 2-dimensional x-projection method with quasi-optimal hyperplane selection
and if possible, geometric acceleration as described in section 3.

(6) 2-R is the 2-dimensional r-projection method with quasi-optional subspace selection
as described in [11].

Each method was programmed in FORTRAN and executed from a library using a
Honeywell Sigma 6. All calculations were performed in double precision and each test case
used an initial starting vector of zero. Any I/O that was performed was not included in the
C.P.U. time.

The order of operations (additions and multiplications) and the number of comparisons and
library calls (absolute value, cosine, square root) for the overhead calculations (calculations that
are performed only once) along with the calculations required at each cycle of iteration are
depicted below for methods 1-X, 2-X (without hyperplane selection), 2-XA and 2-R.

Overhead Per cycle
Method Operations Comparisons  Library | Operations Comparisons  Library
1-X 3n?+2 none n 4n*+2n n n
2-X 4n*+3n none n 4n*+10n n n
XA RP+12 (nP-nd)2 n’2 4n*+13n n n
2-R n*+n¥2 (n*-n?)2 n?f? 2n* n n

The overhead and cycle calculations are of the same order for methods 1-X and 2-X. When
hyperplane selection and geometric acceleration are added to the 2-X method producing method
2-XA, the overhead calculations jump from 0(4n®) to 0(3n%/2). However, the calculations per
cycle remain the same order. Thus the advantages of hyperplane selection and geometric
acceleration outweigh the additional calculations. This is verified in the following test cases.

A. Special test case
Test Case 1 is presented in Table 1 comparing the performance of the six programs. In Table
1 the coefficient matrix, angles between rows of the coefficient matrix, the constant vector,
various pairings of row vectors and pairings of column vectors and final approximate solution
vector are given. The column headings in Table 1 are described as follows:
Method—an abbreviation for one of the six programs.
Pair—indicates how the row vectors of the coefficient matrix are paired. A quaisi-
optimal selection of projection hyperplanes is determined according to section 4
and labeled BEST (most parallel rows). In contrast the worst selection of
projection hyperplanes is determined and labeled WORST (most orthogonal
rows). Pairings associated with method 2-R are for columns vectors, of course.
Geo. Acc.—indicates if geometric acceleration to the solution could be performed (yes),
could not be performed (no) or does not apply (—).
Error—inner product of the final residual vector. Powers of 10 are given in parenthesis.
1.9 (- 8) denotes 1.9x 107,
Cycle—number of cycles required to obtain the solutmn
Time—amount of C.P.U. time recorded in seconds. The Sigma 6 C.P.U. clock ticks
occur every 500 ms. Each test case was run with little or nothing else in the
system to minimize the number of swaps. In some instances test cases were
rerun and the C.P.U. times were accurate within 1.5%.

In all cases the iterative process terminated when every corresponding component of two
successive approximate solution vectors was within 0.000005.
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Table 1. Results for Test Case |

100 245 630 -75 -8% 0 0 4.435283
147 =25 300 756 0 13 0 3.141906
0 123 452 -1 753 249 0 - 1L.777156
A=| 12 -568 30 21 -78 0 8|, x=| 0412942
0 0 -23 563 752 843 -1 —0.041611
145 -20 1 7 30 6 0 -0.190498
-1 0 43 8023 63 0 3 —-61.520275
Row
2 81
31 110 79
4 94 85 102
RHERE 51 120 65 48 93
6 95 77 80 82 80
7 93 23 87 87 63 87

o Ty L O S
(6 in degrees)
b' = (100, 350, —496, — 7002, 143, 579, 3048)
2-XA BEST (7,2), (5,3), (6,4), (5, 1)
2-XA WORST (7,3), (4, 1), (6,2), (5, 4)

2-R BEST (6,5), (3,1, (7,2), (5,4)
2-R WORST (4,2), (7, 1), (6.3), (7,5)

Geo. :

Method Pair Acc. Error Cycle Time
1. G-8 - — — — FAILS
2. 1-X — — 0.756 (=7) 26,124 111.866
3. 1-XA — Yes  0.485(—14) 151 0.656
4. 2-X BEST —  0.765(-7) 6175  29.018

WORST —  0.812(-7) 25383 121.018
5. 2-XA BEST Yes 0.274(-11) 28 0.174
WORST Yes 0.316(-7) 64 0.362
6. 2-R BEST —  0.353(-6) 137 0.404
WORST —  0688(-3) 672 1.776

B. Random coefficient matrix

In test case 2 we tested the methods in the following manner. For a given dimension n, we
generated a random matrix (a matrix consisting of random numbers between 0 and 1). We
assumed a solution vector with components all 1’s and generated an appropriate righthand side.
The resulting systems were solved and the C.P.U. times and row or column vector pairings
(BEST and WORST) were recorded. This procedure was repeated for each method for the
same matrix. Results are displayed in Table 2. The iterative process terminated when every
corresponding component of two successive approximate solution vectors was within 0.000005
(for dimensions 4, 8, 12, 16 and 20). For comparable accuracy a tolerance of 0.00001 was used
for dimension 30, 40 and 50. G-S was not included in Table 2 because it failed in all cases.

Table 2. C.P.U. times in seconds for test case 2 (random matrices)

Methods
1-X 1-XA 2-X 2-X 2-XA 2-XA 2-R 2-R
Dimension BEST WORST BEST WORST BEST WORST
4 0.38 0.20 0.17 0.26 0.04 0.06 1.21 129
8 18.15 5.76 9.41 23.34 243 6.95 1.61 10.60
12 - 2461 6.45 13.79 13.10 4.40 4.80 12.01 2533
16 42.02 3423 5032 20.06 12.74 4.62 19.77 467
20 42.52 36.08 20.09 47.10 1427 27.81 52.23 5322
30 503.72 137.78  618.14 516.68 116.16 195.33 647.64  1052.90

40 710.97 71293 492.80 766.59 294.41 511.79 714.41 1035.82
50  1018.16  1020.89  828.14 716.37 730.18 718.84 H a

*Rate of convergence is extremely slow.
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C. Ill-conditioned matrices

A classical example of ill-conditioned matrices is the set of Hilbert matrices H, of order n
with elements H,(i, j) = 1/(i + j — 1) (see [4]). In test case 3 we compare methods G-S, 1-X, 2-X,
1-XA, and 2-XA for various orders of Hilbert coefficient matrices. In each case a solution
vector with components all 1's was assumed and the appropriate righthand side was generated.
Table 3 gives the results of test case 3 where C.P.U. times for various dimensions of Hilbert
matrices are given. In addition the maximum absolute difference of any component of the final
approximate solution vector from 1 is given. This is used as a measure of accuracy rather than
the inner product of the final residual vector. Results for 2-R are not included since it fell victim
to round-off error propagation and failed to yield an accurate solution for n > 8. In fairness to
method 2-R which theoretically guarantees to reduce the length of the residual vector and hence
converge, we found the length of the residual vector was reported by the method as decreasing
in cases when n > 8 but the approximate solution vector was diverging to infinity. In all cases a
tolerance of 0.000005 was used to terminate the iterative process.

Table 3. Results for test case 3 (Hilbert matrices)

Method
G-S 1-X 1-XA 2-X 2-XA
Dimension Max. Dif. Time  Max. dif. Time Max. dif. Time Max.dif. Time Max.dif. Time
4 0.0051 3.98 0.0296 13.99 0.0183 0.56 0.0139 0.24 0.0146 0.06
8 0.0197 19.30 0.0640 11.98 0.0637 0.92 0.00%96 6.81 0.0092 0.56

12 0.0278 55.17  0.0664 122.31 0.0267 3153 0.0191 5.1 0.0191 0.82
16 0.0259 10095  0.0518 262.94 0.0403 3482 0.0161 53.68 0.0067 14.25
20 0.0384 105.16  0.0558 314.60 0.0614 3879  0.0128 90.23 0.0097 14.27
30 0.0280 49297  0.0720 37534 0.0720 377.21  0.0169 103.10 0.0186 16.87
40 0.0478 578.19  0.1542 450.17  0.0474 39353 0.0267 103.79 0.0271 103.98
50 0.0214  1902.91 4 * 0.0867  1042.83  0.0149 794.24 0.0145 285.82

*Rate of convergence is extremely slow.

6. SUMMARY AND CONCLUSIONS

We feel the test cases provide fairly clear-cut conclusions. The 2-dimensional x-projection

method with hyperplane selection and geometric acceleration, 2-XA proved to be the superior

" method over a wide range of test cases in both accuracy and C.P.U. time. 2-XA proved superior
to the best known r-projection method, 2-R, and to the best known x-projection method to
date, 1-X. G-S was included in the comparisons as a standard method for solving systems of
linear equations to give a point of reference. 2-X A proved superior to G-S even when G-S did
not fail (Table 3). The hyperplane selection criteria presented in section 4 proved in practice to
be extremely successful for increasing the rate of convergence. Every test case showed this
(2-X BEST vs 2-X WORST).

" The quasi-optimal selection criteria proved successful in nearly every example. There were
exceptions however, (Table 2, n = 16 and a few others) but for most cases it reduced the C.P.U.
time significantly. The geometric acceleration technique presented in Section 4 proved
extremely successful in practice. For the cases where it could be applied the C.P.U. time was
reduced significantly and the accuracy improved by orders of magnitude. (See 2-XA BEST vs
2-X BEST in Table 1.) For the cases where it could not be applied the added cost in C.P.U. time
to test for the geometric acceleration condition was insignificant. (See 2-XA BEST vs 2-X
BEST in Table 3, n =40; also 1-XA vs 1-X in Table 2, n =40, 50 and in Table 3, n = 30.)

In conclusion, 2-XA like all projection methods is guaranteed to converge for arbitrary
starting vector and nonsingular coefficient matrix. In addition, 2-XA has been shown to be
competitive and in most cases superior to other well known iterative algorithms both in rate of
convergence and accuracy. Furthermore, with ill-conditioned matrices 2-XA proved superior to
the other methods tested. A program listing of method 2-XA in the form of a Fortran
subroutine follows. :
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SUBROUTINE XFROJ2(NsAsEsX»TOLs IFRT,ROXDIF» ISUMY s MAXCYL)
DOUBLEFRECISION A(NsN) yR(NJ s X(ND

DOURLEFRECISION TOLyMAXDIFsDIFFyROXDIFsDFA;DIFRy IFSUM
DOURLEFRECISION DFSUMI1,DFSUM2,COEF1,COEF2
LDOURLEFRECISION DIIX(S0)»ROX(S0) yOLDX(S50) sOLDDX(S50)
LDOUELEFRECISION AA(SO)»FASTX(S50)

INTEGER ROW(S0)syANGL(S0:50)sSF(51)

c

3K KKK KKK KKK KR 3KKOR KK 3K OK K OKK R K 30K 3K 3K KKK oK 3K K KK 3K OR 0K KK K 50K K Kok ok ok ok K
Cxx

Cx* THIS SURROUTINE.SOLVES A NON-SINGULAR LINEAR SYSTEM

Cxx OF EQUATIONS USING THE 2-DIMENSIONAL X-FROJECTION

Cxx METHOD WITH QUASI-OFTIMAL HYFERFLANE SELECTION

Cx% ANDl GEGMETRIC ACCELERATION.

Cxx

Cxx  ———— DESCRIFTION OF THE ARGUMENTS —-———-

Cxex

Cxx N - THE DIMENSION OF THE LINEAR SYSTEM. THE

Cxx SUBROUTINE IS SET UF FOR A MAX OF N=50

Cxx A — THE COEFFICIENT MATRIX OF THE LINEAR SYSTEM

Cx¥x B — THE CONSTANT VECTOR OF THE LINEAR SYSTEM

Cxx X = THE AFFROXIMATE SOLUTION VECTOR. INITIALLY,

Cxx X CONTAINS THE INITIAL GUESS VECTOR AND

Cxxk WILL CONTAIN THE SOLUTION UFON COMFLETION OF

Cxx THE ALGORITHM. UNLESS SOME FRIOR

Cxx KNOWLEDGE OF THE SOLUTION IS KNOWN THE ZERO

Cxx VECTOR IS SUGGESTELD FOR THE INITIAL GUESS

Cx* TOL - TOLERANCE LIMIT FOR DETERMINING CONVERGENCE. THE
Cxx "ITERATIVE FROCESS TERMINATES WHEN EVERY

Cxx CORRESFONDING ELEMENT OF THE AFFROXIMATE SOLUTION
Cxx VECTOR FROM TWO SUCCESSIVE CYCLES IS WITHIN

Cxx THIS VALUE. SUGGESTED VALUES RANGE FROM 0.00001
Cxx TO 0.0000001.

Cxx IFRT - EVERY IFRT NUMEBER - OF CYCLES STATISTICS WILL EE
Cxkx -GATHERED AND ANALYZED TO DETERMINE IF GEOMETRIC
Cxx ACCELERATION CAN RE FERFORMELD, IN MOST CASES

Cxk .~ VALUES FROM 25 TD 200 WORK QUITE WELL.

Cx* RIOXDIF- WHEN THE RATID OF THE CHANGES IN THE AFFROXIMATE
CxX SOLUTION VECTOR (AS GATHERED EVERY IFRT CYCLES)
Cxx IS WITHIN THIS VALUE THEN GEOMETRIC ACCELERATION
Cxx IS FERFORMED. ¥%ONE MUST EE VERY CAREFUL WITH
Cxx ' THIS ARGUMENTX% IF ROXDIF IS TOO LARGE FRE-

Cxx MATURE ACCELERATION MAY OCCUR AND THE SYSTEM MAY
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Cxk DIVERGE. OF COURSE, IF RDXDIF IS TOO SMALL

Cxx ACCELERATION MAY NEVER OCCUR., RECOMMENDED VALUE
Cx% IS .005. ( ON THE HILRERT MATRIX OF SIZExr=40
Cxx I USED .1 AND IT WORKED QUITE WELL., FOR A WELL-
Cxx CONDITIONED SYSTEM .00005 MAY EE A EBETTER VALUE.)
Cx* ISUMY - EVERY ISUMY CYCLES FROGRESS OF THE SOLUTION IS
Cxx REFORTELD. THE CYCLE NUMERER, AFFROX. SOLUTION
CxXx VECTOR AND INNER FROIUCT OF THE ERROR VECTOR

Cakok ARE GIVEN. IF ISUMY IS <= 0 THEN NO SUMMARY

Cxx IS GIVEN.

Cx*x MAXCYL- THE MAXIMUM NUMEER OF CYCLES YOU WISH TO ITERATE.
Cxxk IF THE SOLUTION IS NOT DETERMINED REFORE THIS»
CxX THE FROCESS IS HALTED WITH SUMMARY INFO. GIVEN.
Cxx

230K K K I K KK KK 3K K K8 KKK K R 3K 3K K K HOHOK K 3K K K 38 3 3K 0K 83K KK JOK K sk oK Kok skl sk Kok kKoK ok ok
C dxkxdk OVERHEAD CALCULATIONS oksdokkcrsok ook iokok

C
C —--- NORMALIZE THE COEF MATRIX» A ————————=—————-
c

0 30 I=1ysN

LIFSUM=0.

ng 10 J=1sN
DFA=ACIyJ)
DFSUM=DFSUM + LDOFAXDOFA

10 CONTINUE

DFSUM= DSQART(DFSUM)

ng 20 J=1isN
AlIyd)= AL J)/DFSUM

20 CONTINUE
B(I)=E(I)/DFSUM
30 CONTINUE
C
C =--- END OF NORMALIZING THE A MATRIX --—-————----
C
C ——==- CALCULATE THE ANGLES BETWEEN ROWS OF A ---
C
IFA=180.0

DFA=LFA/2,1415%
[0 60 I=2,N
L=I-1
o0 50 J=1.L
LFSUM=0.
00 40 K=1sN
DFSUM=DIFSUM+A (T s K)Y XA (Js K)

40 CONTINUE
TEMF=0FSUN
ANGL (IsJ)=ACOS(TEMF)XDIFA
C MAKE ALL ANGLES <= 90 TO MORE EASILY
c DETERMINE THE ROW VECTOR FAIRINGS
IFCANGL(I»J).GT.90) ANGL(IsJ)=180-ANGL(IsJ)
50 CONTINUE
60 CONTINUE
c
C
C --- END OF CALCULATING THE ANGLES —===—-=—ee—eeao
C
C --- SELECT QUASI-OPTIMAL ROW VECTOR FAIRS
C --- (MDST FARALLEL)
ISF=1
00 70 I=1,N
ROW(I)=0
70 CONTINUE
C
00 120 IDUMMY=1,999999
MIN=300
IROW=0

ICOL=0
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[o 90 I=2sN .
IF(ROW(I)NE.O) GO TO 90
L=I-1
0o 80 J=1,L
IF(ROW(J).NE.O) GO TO 80
IF(ANGL(I-J).GE.MIN) GO TO 80

c FOUND NEW MINIMUM
MIN=ANGL(IyJ)
IROW=I
ICOL=J
80 CONTINUE
?0 CONTINUE
c
c
) IF(MINJ.NE.300) GO TO 110
C
C ——-DONE--FIX LOOSE ENDS IF N IS ODD—---
C
IF(N/2%2,ER.N) GO TO 130
[0 100 I=1:N
IF(ROW(I).NE.O) GO TO 100
SF(ISF)=1
SF(ISF+1)=1
IF(I.EQ.1) SF(ISF+1)=2
GO TO 130
100 CONTINUE
GO 70 130
C
C
110 SF(ISF)=IR0OW
SF(ISF+1)=ICOL
ISF=ISF+2

ROW(IROW)=1
ROW(ICOL)=1
120 CONTINUE

C --- ENDI OF SELECTING THE ROW VECTOR FAIRS -—-==————————-

130 LLASTSF = N
IF( N/2%2.NE.N) LASTSF=N+1

C LASTSF IN THE SIZE (LENGTH) OF SF
C --- CALCULATE THE INNER FRODUCTS (ACI)yA(I+1)) —=——=—=--m
C —-—- CALCULATE 1 - ((A(I),ACI4+1))%%2) —=e—eeee
C -—- I AND Il ARE USED IN A& AND IN SF Ty
C --—— K AND L ARE USED INA  =ceeeeee-
C --- THE INNER FRODUCTS ARE CALCULATED FOR ONLY ---—--—--
C --- THE SELECTED FAIRS e i
C
D0 150 I=1sLASTSF:2

T1=I+1

K=SF(I)

L=SF(I1)

[FSUM=0.,

L0 140 J=1,N
DFSUM=DFSUM + A(RyJ) X A(L:J)
140 CONTINUE
AACI) = DFSUM
AACIL1Y = 1., - DFSUMXDOFSUM
150 CONTINUE

C =-— ENDIN OF INNER FRODUCT CALCULATIONS --——-——====-==——-

o 160 I=1sN
OLOX(I)=X(I)
OLOOX(I)>=.00003
c OLODX IS INITIALIZED NON-ZERO TO FREVENT
c ZERD DIVISION WHEN CALCULATING THE FIRST RDX
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FASTX(I)=X(I)
CONTINUE

SRR R IOROR K 30K 0K 30K SHOROK OR K SKORMOKK KKK R 0K SOK SOKR 30K KKK KK 0K KK % 50Kk KOk S0oK %

C

C diorksk END OF THE OVERHEAD (INITIALIZATION) CALCULATIONS ¥k%¥%
c

C

o0

[N Ny]

C _——

C —_
cC —-——-

]

o O

Oy rara
) =

C
C
c
C

IF(ISUMY.EQ.0) ISUMY=9999999

¥EREKK START OF THE CYCLE LOOF  soksokskokskokokok SO 3Ok ok ok ok kol ok ok ok ok

[0 280 ICYCLE=1sMAXCYL

CHECK IF SUMMARY INFORMATION IS TO EBE FRINTED =~=—————-
IF(ICYCLE/ISUMYXISUMY.NE.ICYCLE) GO TO 190
FRINT SUMMARY INFORMATION

OFR=0+
g 180 J=1sN
DFSUM=0,

00 170 K=1sN
DFSUM=DFSUMt AC(JsKIXX(K)
CONTINUE -
DFSUM=R(J) -DOFSUM
IFR=DFR+ DFSUMXDFSUM
CONTINUE
WRITE(L108,310) ICYCLEsDFRy (X(K)sK=1yN)
ENII OF FRINT SUMMARY INFORMATION ——--———mmmm e

CONTINUE

ITERATION LOOF. COMFUTE THE NEW
AFFROX. SOLUTIION VECTOR BY FROJECTING
ONTO X(K) AND X<(L)

00 220 I=1sLASTSF,2
Ii=I+1
R=SF(I)
L=8F(I1)

I ANDI I1 ARE USEDl IN AA AND IN SP
K ANDN L ARE USED IN A

[FSUM1=0,
DFSUM2=0.
D0 200 J=14sN
DFSUMI=DFSUML + X(J)XA(K,J)
DFSUM2=DOFSUM2 + X(J)*A(LsJ)
CONTINUE
COEF1=((IFSUM2-E(L)) % AA(I)-DFSUMI+E(K)) / AACI1)
COEF2=( (DFSUM1-E(K)) % AA(I)-DFSUM2+B(L)) / AACI1)
COMFUTE NEXT AFFROX. SOLUTION VECTOR
[0 210 J=1,N ‘
X(J)=X(J) + COEF1%A{KyJ)+COEF2%A(LsJ)
CONTINUE . '
CONTINUE

MAXDIF=0,

D0 230 J=1,N
LIFF=DAEBS(X(J)-FASTX(J))
IF(DIFF.GT.MAXDIF) MAXDIF=DIFF
FASTX (J)=X(J)

CONTINUE

IF(MAXDIF.LE.TOL) GO TO 290

ENI' OF THE CYCLE CALCULATIONS ==——m——mmmme
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IF(ICYCLE/IFRTXIFRT.NE.ICYCLE)GO TO 280

D00

——— ATTEMFT TO ACCELERATE
00 240 J=1sN
DX (J)=X(J)-0LDX(J)
OLDX (J)=XC(d)
ROX(J)=DX(J)/0L0DOX(J)
OLDOX(J)=DX(J)
240 CONTINUE

C
C --- IF RIOX VALUES ARE ALL WITHIN RIXDIF OF EACH
C --- OTHER THEN ACCELERATE TO THE SOLUTION
C
L=N-1
0o 2460 I=irL
K=I+1

Do 2350 J=KsN
IF(DARS(RIOX(I)=RDX(J)).GT.RUXDIF) GO TO 280
250 CONTINUE
260 CONTINUE

o0 270 I=1:N
X(I)= (X(I)-DX(I)) + OX(I)/C(1.0-ROX(I))
FASTX(I)=X(I) .
OLOnX(I)=0,000001
OLDDX IS8 MADE NON-ZERO TO FREVENT ZERO
DIVISION ON THE NEXT CYCLE
OLDX(I>=X(I)
CONTINUE

on
~
o

ae]
[&]

CONTINUE

Soksokoksoksokkk ENDN OF THE CYCLE  sokkokksksidoksoorsooRkioRkok ke kokox

HAOORKRRRKORAK SOLUTION FOUNIDN kR ok dOKOKREOKOKRORKORIOR ORI OK

~0
o

CONTINUE
CALCULATE (RsR)
IFR=0.
0 310 J=1:N
OFSUM=0.
0 300 K=1sN
DFSUM=0FSUM + ACJrK)XX(K)
300 CONTINUE
OFSUM=E(J)-DFSUM
LIFR=0OFR + LDFSUMXDFSUM
310 CONTINUE
C --- FRINT THE SOLUTION .
WRITE(108:,500) ICYCLEsDFRy (X(K)»K=1sN)

orROCOOOOMNMOOR

S00 FORMAT(’0°//» “SOLUTIDN’/"NO OF CYCLES = “»
X I9»7 (RsR) = “»E18.9/70S0LUTION VECTOR FOLLOWS’»
X /7¢7 798(F13.7:1X0))
510 FORMAT(” AT CYCLE = “+»I%9y* (RsR) = “»E18.9/
X ¢ APFROX. SOLN. VECTOR FOLLOWS’/
X (7 “y8(F13.7,1X0))
RETURN
END



