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Abstract—The solution of linear systems of equations using a 3-dimensional x-projection method is
presented. At each step of the iterative process the approximate solution vector is projected to a point in
the intersection of three of the hyperplanes of the linear system. Nonsingularity of the coefficient matrix is
the only requirement for convergence. An algorithm is presented to select triples of hyperplanes to project
the approximate solution vector at each step. The algorithm is quasi-optimal since the hyperplanes, which
are determined by the row vectors of the coefficient matrix, are selected a priori. This is shown to
significantly reduce the number of cycles required for convergence. We observe that in some cases the ratio
of the change vectors of the approximate solution vectors after some number of cycles becomes a constant.
Thus, when this occurs a simple geometric acceleration can be applied to calculate the solution directly.
Geometric acceleration can significantly reduce computation time and improve the accuracy of the solution
by orders of magnitude. The 3-dimensional x-projection method was tested against the 2-dimensional
x-projection method using random and Hilbert coefficient matrices and proved superior (less C.P.U. time
required) in nearly every case.

1. INTRODUCTION
The purpose of this paper is to develop a 3-dimensional x-projection method for solving the
equation

Ax=b (1.1)

where A is a nonsingular matrix of order n and x and b are n-vectors. In this paper we also
develop an acceleration technique for the 3-dimensional x-projection method. The paper is
divided into six sections. In Section 2, the basic concepts of x-projection methods for solving
systems of linear equations is reviewed. In Section 3, a 3-dimensional x-projection method is
developed and in Section 4 a hyperplane selection criteria is developed to accelerate the rate of
convergence of the 3-dimensional x-projection method. Test cases and comparisons are
presented in Section 5. Concluding remarks are presented in Section 6 followed by a program
listing of the 3-dimensional x-projection method using a quasi-optimal hyperplane selection
criterion and geometric acceleration.

2. BASIC CONCEPTS OF x-PROJECTION
METHODS

Wainwright[1] gives a detailed development of the I-dimensional and 2-dimensional x-
projection methods for solving systems of linear equations. To review briefly, the methods are
as follows:

(a) 1-Dimensional x-projection method

Each equation of (1.1) (i.e. (a’, x) = b; where a' is the ith row of A) geometrically defines an
(n —1)-dimensional hyperplane called the ith hyperplane which is orthogonal to a’. (a', x)
denotes the inner product of the two vectors, a’ and x. The solution vector is the point in which
the n hyperplanes of (1.1) intersect. The iterative process begins with an arbitrary point, x°,
then moves it onto hyperplane 1 in a direction orthogonal to it. It then moves to hyperplane 2 in
a direction orthogonal to it, and so on to hyperplane n in a direction orthogonal to it. Then the
process starts over by moving to hyperplane 1 in a direction orthogonal to it, to hyperplane 2 in
a direction orthogonal to it and so on. Pizer([2] proves that this process always converges for
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arbitrary x° assuming the non-singularity of A. To save _time in the iteration, each equation of
(1.1) is scaled according to the Euclidean norm so that (a’, a’) = 1. Thus the (k + 1th step of this
method becomes

xk+l . xk + n“af (21)

where r* =b - Ax* is the residual vector and rf = (b, — (a', x*))a’ where i is the residue of
k +1 modulo n. This is a total step method in that every component of the approximate solution
vector is altered at each step. Wainwright[1] calls this a 1-dimensional x-projection method
because at each iterative step the approximate solution vector, x*, is projected onto one
(n —1)-dimensional hyperplane. Other methods of projection which project the residual vector,
r*, at each step are called r-projection methods. The 1-dimensional r-projection method was
first developed by Garza[3] and later rediscovered by Keller[4]. [5, 6] also give discussions of
the 1-dimensional r-projection method. Discussions concerning 2 and 3-dimensional r-pro-
jection methods can be found in [7-10]. The best overall discussion of r-projection methods can
be found in [11].

(b) 2-Dimensional x-projection method

For the 2-dimensional x-projection method the iterative process begins with an arbitrary
point, x°, then moves it onto the intersection of hyperplanes 1 and 2 in a direction orthogonal to
both of them. It then moves to the intersection of hyperplanes 3 and 4 in a direction orthogonal
to both of them, and so on to the intersection of hyperplanes n—1 and n in a direction
orthogonal to both of them. Then the process starts over by moving to the intersection of
hyperplanes 1 and 2 in a direction orthogonal to both of them, then to hyperplanes 3 and 4 in a
direction orthogonal to both of them and so on. More precisely, if n is even the hyperplanes are
paired (1,2), (3,4),...,(n—=1,n) and if n is odd the hyperplanes are paired (1,2),
(3,4),...,(n=2,n~-1), (n—1, n). Thus at each iterative step the approximate solution vector is
projected onto two (n —2)-dimensional hyperplanes. The 2-dimensional x-projection method at
the k+1 interaction step projecting the approximate solution vector onto hyperplanes i and j
(1=i,j=n;i#j) is defined by

x**1 = xk+ qa’ + Ba’ (2.2)
where
_ L@, x*) - b))’ &)~ [(a’, x*) - b;]
Fo 1-(a’, a’y
= [(a£9 xk) = bi}(ai’ af) S [(aj9 xk) iy bj']
B= [~ (a’ a)? ‘ 2

Wainwright[1] proves that the 2-dimensional x-projection method converges for arbitrary x°
assuming the nonsingularity of A. He also develops an acceleration technique for increasing the
rate of convergence by appropriate hyperplane pair selections.

3. 3-DIMENSIONAL x-PROJECTION METHOD

Consider the following nonstationary iterative scheme for solving (1.1) that makes suc-
cessive changes to the components of a starting vector, x°

= xk 4+ o + Byt + o

where a;, B and A, are scalars and ¥ y* and o* are n-vectors. For the 3-dimensional
x-projection method the iterative process begins with an arbitrary point, x°, then moves it onto
the intersection of hyperplanes 1, 2 and 3 in a direction orthogonal to all of them. It then moves
to the intersection of hyperplanes 4, 5 and 6 in a direction orthogonal to all of them, and so on
to the intersection of hyperplanes n—2, n—1 and n in a direction orthogonal to all of them.
Then the process starts over by moving to the intersection of hyperplanes 1, 2 and 3 in a
direction orthogonal to all of them and so on. If n modulo 3 = 1, then the hyperplanes are
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grouped (1,2,3), (4,5,6),....,(n=3,n=2,n=1),(n=2,n—1,n) and if n modulo 3 =2 then the
hyperplanes are grouped (1,2,3), 4,5,6),...,(n—-4,n-3,n-2),(n—2,n—1,n). Let x* be a
vector to a point in the intersection of hyperplanes i, i + 1 and i +2. Let x**' be the vector to
the point in the intersection of hyperplanes i+3, i+4 and i +5 which is reached by moving
from x* in a direction orthogonal to all three hyperplanes, i +3, i +4 and i+35. Let y be any
vector to the point in the intersection of hyperplanes i +3, i +4 and i +5 (y# x**'). Then the
change to the approximate solution vector, x**! — x*, will be orthogonal to x**' -y, which lies
in the intersection of hyperplanes i +3, i+4 and i +5:

((x**'=x5), (x** = yp=0. (3.1

Since both x**! and y define points in the intersection of hyperplanes i +3, i +4 and i +35,
both satisfy the (i +3)th, (i + 4)th and (i + 5)th equations of (1.1):

(@3, XY = by; (@7, y) = biss (3.2)
(ai+4, xk+l) = b4 (a”d, ¥)= by (33)
(@™, x4 = bius; (a™%,9) = biss 34

thus
(@™, (x*"=y)=0
(@™, (x*'=y)=0 3.5
(@™, (x*"'=y)=0.

i+3 i+4

Therefore, a linear combination of a'*?, a*** and a'** will be orthogonal to x**' — y for any y to

the point in the interssction of hyperplanes i+3, i+4 and i+5 (y can range over n—3
dimensions). Thus it follows from (3.1) and (3.5) that a linear combination of a™*? a™** and a'**
will be in the same direction as x**' — x*, so for scalars a, 8 and A

XK1= xk 4 0a + B+ Aa™, (3.6)
By taking the inner products of a** with (3.6), a’** with (3.6) and a™** with (3.6) and using

equations (3.2), (3.3) and (3.4) we obtain the following symmetric linear system of three
~ equations and three unknowns:

a(ﬂj+3, ai+3)+3(ai+3, ai+4)+/\(ai+3, a£+5) L b,‘+3"'(ﬂj+3, xk)
(1((1”4, ai+3)+3(ai+4, ai+4)+/\(ai*4, ai+5) s b,‘+4*(ﬂj+4, xk) (37)

a(ai-v-s, a‘+3)+ﬂ(a‘+5, ai+4)_+_’\(ai+5, aa‘+5) — b;+5—(a‘+5,x").

If we scale each equation of (1.1) according to the Euclidean norm so that (a/, a’) =1, 1 =j=n,
then solving for @, 8 and A we get

a= D {rusll=(a™, a1+ ria[(a™, a*)a™, a:+s)__ (a'+3, ai*)]
+riusl(@™, a™* (@™, a™) - (a™, a™)]}

B=p @™, a™)a™, a™) = (@™, ™+ a1 - (@™, ™) (38)
+ris[(a™, a™ (@™, a™%) - (@™, a )]}

A _ 5 {ri+3 [(aH-S’ ar+4)(a1+4, a|+5) _ (an-:s’ a|+s)] + Tisa [(ﬂ”3, at+4)(al+3’ aa+5) _ (a'*“, aH—S)]

+rys[1=(a™, a™}

where D is the determinant of the coefficient matrix in (3.7).
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D=1 +2((1i+4, ai+5)(a£+3’ ai+5)(ai+3’ ai+4)_(a£+3’ ai+5)2 _(ai+4’ ai+5)2_(ai+3’ af+4)2‘ (39)

Thus the 3-dimensional x-projection method is defined by (3.6) where a, 8 and A are defined in
(3.8).

TueoREM 3.1

A single step of a 3-dimensional x-projection method projecting x*, which defines a point in
the intersection of hyperplanes i—3, i—2 and i—1, to x**' which defines a point in the
intersection of hyperplanes i, i + 1 and i + 2 in a direction orthogonal to hyperplanes i, i+1 and
i+2, is equivalent to repeated 1-dimensional x-projection steps projecting the approximate
solution vector back and forth to points in the ith, (i + I)th and (i +2)th hyperplanes until the
change between two successive approximate solution vectors is zero.

The proof of this theorem follows the same pattern and form as the proof in the
2-dimensional case given in [1] only extended to three dimensions. The proof while not difficult
is long and tedious and will not be presented in this paper.

THEOREM 3.2

The 3-dimensional x-projection method for solving linear systems is convergent provided
the coefficient matrix is nonsingular.

Proof. The proof follows immediately from Theorem 3.1. The 3-dimensional x-projection
method is based on repeated applications of the 1-dimensional x-projection method which is
always convergent. The Pythagorean theorem guarantees that we move closer to the inter-
section of three hyperplanes as we project back and forth between them in directions
orthogonal to them. In fact it can be shown that we move closer to the intersection of all of the
hyperplanes[2].

4. ACCELERATION TECHNIQUES FOR THE 3-DIMENSIONAL
x-PROJECTION METHOD

(a) Selection of projection hyperplanes

The x-projection class of methods is typical of most projection methods in that the rate of
convergence is very slow. One would like to be able to select a priori, a sequence of triplets of
projection hyperplanes which guarantees most rapid convergence for a system of linear
equations. One criterion for selecting an optimal sequence of projections is to observe how the
residual at any step is related to the hyperplanes determined by three of the rows of A. In
particular one would like to reduce the length of the residual vector as much as possible. Let x*
be a vector to a point in the intersection of hyperplanes f, g and h and we move x* to xk*!
along a direction orthogonal to hyperplanes i, j and p using a 3-dimensional x-projection
method. Thus

x¥1 = xk+ aa’ + Ba’ + Aa”®
and
(r**1, Py = (b — Ax*Y b — AxFYY)
or equivalently
(7%, 1) — (F*L, P47y = 2a(r, Aa') +2B(r*, Aa’) +2A(r%, Aa®) —2aB(Ad’, Aa’) - 2aA(Ad', AaP)
—2BA(Ad’, Aa®) - aX(Ad’, Aa') - B*(Ad/, Aa") - A*(AaP, AaP).
Substituting (3.8) for a, B and A and cos 6; for (a', a’) (since (a', a’) = (a’, a’) = 1), we get

(rk rk)_(rk+l rkﬂ):_l____ [Rijp_S_ijp:I
? ’ Die Dir
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where
R™ =2(r*, Aa)W, +2(r*, Aa) W, + 2r*, Aa") W,
S =2(Ad’, Aa") W,W; + 2(Ad’, AaP )W, W, + 2(Ad, Aa")WW, +(Ad', Aa’ )W}
+(Ad’, A ) WP + (Aa®, Aa")W,?
and

W, = r} [1 - cos® 6,,] + r* [cos 8;, cos 8, — cos 6]+ r,* [cos 8; cos 6, — cos 6;,],
W, = r [cos 6, cos 6, — cos 6;]1+ r} [1—cos? 8,] + r,* [cos 6; cos 8, —cos 6],
W, = r/ [cos 6; cos 6, — cos 8,1+ rf [cos 6; cos 8;, — cos 6;,]+ r,* [1—cos? §;],

ijp — 2 2 2
D" =1+2cos §; cos 6, cos §, —cos® f; —cos® 6, — cos” ;.

To select a single step optimal method (i.e. one which would give a minimum value for
(r**t p%*h), i, j, p are chosen such that (1/D")[R' —(S%[D")] is a maximum. We observe
that R% = 0(r* + r¥ + r,%) and S% =0(r* + r* + r,*)2. Thus S will approach zero at a faster
rate than R as r* - @. (§ is the zero vector). In fact since (1/D) is a constant for the choice
of i, j and p it dominates the product (1/D%)[R" —(S%[D%)] as r*—@. Therefore a
quasi-optimal selection for the 3-dimensional x-projection method is to select triples of rows of
A in descending order of the values of (1/D%) (i,j,p=1,2,...,n). All (1/D%) (i,j,p=
1,2,...,n) are computed initially and a stationary algorithm is obtained by selecting a priori
triples of rows of A based on the values of (1/D"") such that each row is used at least once and
at most two rows are used twice in each cycle. Calculating all (1/ D) values a priori results in
0 8n* operations. The most coplanar triples of rows of A results in the largest (1/D"?) value.
Therefore another quasi-optimal selection is to select triples of A which are most coplanar.
Specifically, the quasi-optimal selection process that was used in all of the test problems and
comparisons and which appears in the program listing is described as follows:

First, the minimum angle is determined among the pairs of rows of A. From among the
remaining rows we determine which row makes the best coplanar fit. This process is repeated
again with the unused rows of A until all rows are used. Calculating the angles a priori results
in 0 2n* operations which is slightly more efficient than calculating all of the (1/ D) values.

(b) Acceleration using geometric series

Probably the most significant characteristic of the x-projection class of methods is that the
ratio of the change vectors of the approximate solution vector as r*—@ converges to a
constant[1]. That is, at some cycle, m, the solution can be written

x=xm +Axm+l +Axm+2+ wlaia !(Axi-#l — xr‘+l _xi)

where (Ax™/Ax")=p for all i>m, (p<1) and m, m+1, m+2,... represents successive
cycles of an x-projection method. Then the solution can be calculated directly:

Axmﬂ
1-p°

x=x"+

This result will not be proven. For some linear systems the iterative process converges before
the mth cycle has been reached (i.e. before the value of p converges). Thus the geometric
acceleration may not always be able to be applied.

5. TEST PROBLEMS AND COMPARISONS
In this section, four programs are compared. Each program is identified in the comparison
tables by the following notation:

(1) 2-X is the 2-dimensional x-projection method with quasi-optimal hyperplane selection as
described in [1].
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(2) 2-XA is the 2-dimensional x-projection method with quasi-optimal hyperplane selection
and if possible geometric acceleration as described in [1].

(3) 3-X is the 3-dimensional x-projection method with quasi-optimal hyperplane selection as
described in Sections 3 and 4.

(4) 3-XA is the 3-dimensional x-projection method with quasi-optimal hyperplane selection
and if possible, geometric acceleration as described in Sections 3 and 4.

Each method was programmed in FORTRAN and executed from a library using a
Honeywell Sigma 6. All calculations were performed in double precision and each test case
used an initial starting vector of zero. Any I/O that was performed was not included in the
C.P.U. time.

(a) Random coefficient matrix

In test case 1 we tested the methods in the following manner. For a given dimension n, we
generated a random matrix ( a matrix consisting of random numbers between 0 and 1). We
assumed a solution vector with components all 1’s and generated an appropriate righthand side.
The resulting systems were solved and the C.P.U. times and row vector groupings (BEST and
WORST) were recorded. This procedure was repeated for each method for the same matrix.
BEST indicates the quasi-optimal hyperplane selection was used to select the best groupings of
the row vectors of A. For comparison, WORST indicates the quasi-optimal selection was used
in reverse to select the worst groupings of the row vectors of A. This shows the importance of
hyperplane selections. Results are displayed in Table 1. The interative process terminated when
every corresponding component of two successive approximate solution vectors was within
0.000005. AVE (1/D) USED indicates the average value of (1/D%) for the selected triples. This
is indicated in both the BEST and WORST cases for comparison. TIME indicates the C.P.U.
time required for convergence in seconds.

Table 1. Results for test case 1 (random matrices)

E‘;gin_ Methods

2-X 2-XA 3-X 3-XA AVE 3-X 3-XA AVE

(BEST) (BEST) (BEST) {BEST) o (WORST) (WORST) %
TIME TIME TIME TIME USED TIME TIME USED
8 9.75 2.56 9.89 1.73 43.30 23.50 2.64 16.52
12 14.29 4.40 3.03 2.71 47.36 14.14 8.00 12.03
16 52.38 13.40 29.50 13.96 27.06 38.49 34.56 6.74
20 20.89 15.26 17.52 1351951 3798 66.35 66.55 5.30
30 322.82 106.36 [155.81 97.69 13.26 354.19 131.74 6.75
40 325.78 270.89 |290.62 198.02 10.90 478.49 320.186 5.13
50 458.71 459.70 |236.44 237.28 10.03 528.59 530.21 5.08

(b) Ill-conditioned matrices

A classical example of ill-conditioned matrices is the set of Hilbert matrices H, of order n
with elements H,(i, j)=1/(i + j— 1) (see [12]). In test case 2 we compare methods 2-X, 2-XA,
3-X and 3-XA for various orders of Hilbert coefficient matrices. In each case, a solution vector
with components all 1’s was assumed and the appropriate righthand side was generated. Table 2
gives the results of test case 2 where C.P.U. times in seconds for various dimensions of Hilbert
matrices are given. In addition, the maximum absolute difference of any component of the final
approximate solution vector from 1 is given. This is used as a measure of accuracy rather than
the inner product of the final residual vector. In each case, the best quasi-optimal hyperplane
selection was performed (i.e. the rows were grouped consecutively (1,2,3), (4,5,6),...). The
only exception was 3-X and 3-XA for n=30; the rows were grouped (I,11,21),
(2,12,22)...(10, 20, 30). Worst case quasi-optimal hyperplane selections are not included; as one
might suspect in each case the rate of convergence was extremely slow. Inall cases, a tolerance of
0.000005 was used to terminate the iterative process.
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Table 2. Results for test case 2 (Hilber matrices)

oiment Methods
2-X 2-XA 3-X 3-Xa

Max Dif Time Max Dif Time |Max Dif Time Max Dif Time

8 .0096 7.200 .0092 0.58 .0078 0.78 .0078 0.38

12 .0191 6.07 .0191 0.84 .0255 1.98 .0256 0.50
16 .0161 56.65 .0068 15.07 .0311 51.93 .0691 5.06
20 .0128 93.48 .0097 14.95 .0107 19.49 .0100 2.57
30 .0169 108.74 .0186 17.58 .0147 39.57 .0162 6.87
40 .0267 108.15 .0271 108.94 .0361 183.26 .0223 43.84
50 .0149 827.64 .0145 298.37 .0187 170.30 .0093 56.03

6. SUMMARY AND CONCLUSIONS

We feel the test cases provide fairly clear-cut conclusions. The 3-dimensional x-projection
method with hyperplane selection and geometric acceleration, 3-XA, proved to be superior to
the best known x-projection method to date, 2-XA. 3-XA required significantly less C.P.U. time
for convergence in both test cases with the same accuracy. Wainwright[1] has previously shown
the 2-XA method to be superior in C.P.U. time and accuracy over a wide range of test cases to
Gauss-Seidel, the 1-dimensional x-projection method with acceleration, 1-XA, the best known
r-projection method, 2-R as well as Gaussian elimination (in the case of ill-conditioned
matrices).

The quasi-optimal hyperplane selection criteria presented in Section 4(a) proved in practice
to be extremely successful for increasing the rate of convergence (see Table 1, 3-X BEST vs
3-X WORST comparing C.P.U. TIME and AVE (1/D) USED). The geometric acceleration
technique presented in Section 4(b) also proved extremely successful in practice. For the cases
where it could be applied, the C.P.U. time was reduced significantly and in the Random
matrices accuracy improved by orders of magnitude (see 3-X BEST vs 3-XA BEST in Table 1,
3-X WORST vs 3-XA WORST in Table 1 and 3-X vs 3-XA in Table 2). For the single example
where it could not be applied, Table 1 n =50, the added cost in C.P.U. time to test for the
geometric acceleration condition was insignificant. In addition, Table 2 clearly shows one of the
most important characteristics of the class of x-projection methods: the ability to solve
ill-conditioned systems. The nature of most ill-conditioned matrices is that they produce very
large (1/D) values thus making the hyperplane selections extremely effective in increasing the
rate of convergence (see 2-X and 3-X in Table 2). For example, for 3-X for n =12 the AVE
(1/D) USED is 1.38 x 107; for m'=20 the AVE (1/D) USED = 1.09 x 107; for n =40 the AVE
(1/D) USED = 1.58 x 10 and for n = 50 the AVE (1/D) USED = 3.51x 10", Compare this to the
AVE (1/D) USED values in Table 1. Furthermore, in addition to large (1/D) values we were
able in each instance to apply geometric acceleration (see 3-XA in Table 2).

In conclusion, 3-XA like all projection methods is guaranteed to converge for arbitrary
starting vector and nonsingular coefficient matrix. Also, 3-XA has been shown to be a superior
method over the best projection method known to date, 2-XA. 2-XA has previously been shown
to be competitive and in most cases superior to other well known iterative algorithms both in
rate of convergence and accuracy[1]. Furthermore, with ill-conditioned matrices 3-XA proved
very effective and was shown to be superior to the 2-XA method. The author is currently
working on the 4-dimensional x-projection method where even better results are expected. A
program listing of method 3-XA in the form of a FORTRAN subroutine follows.
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SUBROUTINE XFROJ3(NrAsEsXyTOLs IFRT ROXDIF» ISUMYMAXCYL)
DOUELEFRECISION AC(NsN) s BON) » X(N)

DOURLEFRECISION TOLsMAXDIF»DIFFyRIXDIF»DFAsDFRyDFSUM
DOUBLEFRECISION DFSUMKyDFSUML»DFSUMM» COEF1COEF2yCOEF3
DOUEBLEFRECISION SOQRKL»SQRKMsSQRLM

DOUBLEFRECISION DX(S50)yROX(50)»0LDX(50) »OLODX(50)
DOUBLEFRECISION AA(SZ2) rPASTX(S0)

DOUERLEFRECISION AS(S2)»DET(I2)

INTEGER

ANGL (505500 »SF(S2)

INTEGER SW(50)
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THIS SUEROUTINE SOLVES A NON-SINGULAR LINEAR SYSTEM
OF EQUATIONS USING THE 3-DIMENSIONAL X-FROJECTION
METHOD WITH QUASI-OFTIMAL HYFERFLANE SELECTION

AND GEOMETRIC ACCELERATION.

> D
1

TOL -

IFRT -

ROXDIF

!

ISuUMY -

-- DESCRIFTION OF THE ARGUMENTS —==--

THE DIMENSION OF THE LINEAR SYSTEM. THE
SURROUTINE IS CURRENTLY SET UF FOR A MAX OF N=30
THE COEFFICIENT MATRIX OF THE LINEAR SYSTEM

THE CONSTANT VECTOR OF THE LINEAR SYSTEM

THE AFFROXIMATE SOLUTION VECTOR. INITIALLY»

X CONTAINS THE INITIAL GUESS VECTOR AND

WILL CONTAIN THE SOLUTION UFON COMFLETION OF

THE ALGORITHM. UNLESS SOME FRIOR

KNOWLEDNGE OF THE SOLUTION 1S KNOWN THE ZERD
VECTOR IS SUGGESTED FOR THE INITIAL GUESS
TOLERANCE LIMIT FOR DETERMINING CONVERGENCE. THE
ITERATIVE FROCESS TERMINATES WHEN EVERY
CORRESFONDING ELEMENT OF THE AFFROXIMATE SOLUTION
VECTOR FROM TWO SUCCESSIVE CYCLES IS WITHIN

THIS VALUE. SUGGESTED VALUES RANGE FROM 0.00001
TO 0.0000001. .000005 HAS RBEEN USED WITH SUCCESS
EVERY IFRT NUMBER OF CYCLES STATISTICS WILL BE
GATHERED ANI' ANALYZED TO DETERMINE IF GEOMETRIC
ACCELERATION CAN EBE FERFORMED. IN MOST CASES
VALUES FROM 25 TO 200 WORK QUITE WELL.

WHEN THE RATIO OF THE CHANGES IN THE AFFROXIMATE
SOLUTION VECTOR (AS GATHERED EVERY IFRT CYCLES)
IS WITHIN THIS VALUE THEN GEOMETRIC ACCELERATION
IS FPERFORMED, %XONE MUST EE VERY CAREFUL WITH
THIS ARGUMENTX% IF RDXDIF IS TOOD LARGE FRE-
MATURE ACCELERATION MAY OCCUR ANLD THE SYSTEM HMAY
DIVERGE. OF COURSE» IF RDXDIF IS TOO SHMALL
ACCELERATION MAY NEVER OCCUR. RECOMMENDED VALUE
IS .00%., ( ON THE HILBERT MATRIX OF SIZE:Xx=40

I USEDl .1 AND IT WORKED QUITE WELL. FOR A WELL-
CONDITIONED SYSTEM .00005 MAY RE A EETTER VALUE.)
EVERY ISUMY CYCLES FROGRESS OF THE SOLUTION IS
REFORTED. THE CYCLE NUMEER, AFFROX. SOLUTION
VECTOR AND INNER FRODUCT OF THE ERROR VECTOR

ARE GIVEN. IF ISUMY IS <= 0 THEN NO SUMMARY

IS GIVEN.



Cxx
Cxx
Cxx
Cxx
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C ¥RRKKIKKKKKRKK OVERHEAD CALCULATIONS sk k30K Nk Kk 30k %ok Kk Kk ok K
C x¥x
C Xkxx
C
C ——- NORMALIZE THE COEF MATRIXy A ————-cemm—mmm
[: .
DO 30 I=1sN
DFSUM=0.
D0 10 J=1»N
DFA=A(IyJ)
DFSUM=DFSUM + DFAXDFA
10 CONTINUE
DFSUM= DSQRT(DFSUM)
D0 20 J=1sN
ACIsJ)= A(I»J)/DFSUM
20 CONTINUE
E(I)=R(I)/DFSUM
30 CONTINUE
C
c --- ENI! OF NORMALIZING THE A MATRIX ---——————-
c
C -————- CALCULATE THE ANGLES BETWEEN ROWS OF A -—-
C
DFA=180.0
DFA=DFA/3.14159
no 60 I=2,N
L=I-1
DO 50 J=1,L
DPSUM=0.
N0 40 K=1sN
DFSUM=DFSUM+A(I»K)IXA(JIK)
40 CONTINUE
TEMF=DFSUM
ANGL (I»J)=ACOS(TEMP)*DFA
C MAKE ALL ANGLES <= 90 TO MORE EASILY
C DETERMINE THE ROW VECTOR FAIRINGS
IFCANGL(I+J).GT.20) ANGL(I»J)=1B0-ANGL(I,J)
ANGL (Js I)=ANGL(I,))
S0 CONTINUE
&0 CONTINUE
C
C —==~ END OF CALCULATING THE ANGLES --——-———me———ee
[
€C -—— SELECT QUASI-OFTIMAL ROW VECTOR TRIFLES -————
€ === THE SELECTED' TRIFLES ARE FLACED INTO SF ==—--
C
LASTSF = N
IF( LASTSF/3%3.NE.LASTSF) LASTSF=LASTSF+1
IF( LASTSF/3%3.NE.LASTSF) LASTSF=LASTSF+1
c LASTSF IN THE SIZE (LENGTH) OF SP
C
65 SPCT=1
.- DO 70 I=1sN
SW(I)=0
70 CONTINUE
79 MIN=1000
c FIND' THE SMALLEST ANGL
[0 85 I=2yN
IF(SW(I).EQ.1) GO TO 85
L=I-1
D0 80 J=1,L
IF(SW(J).ER.1) GO TO 8O
IFCANGL(I»J) .GE.MIN)> GO TO 80
c FOUNDI THE NEW MIN

Three dimensional x-projection method for solving systems of linear equations

MAXCYL- THE MAXIMUM NUMBER OF CYCLES YOU WISH TO ITERATE.

IF THE SOLUTION IS NOT DETERMINED EEFORE THIS»
THE PROCESS IS HALTED WITH SUMMARY INFO. GIVEN.

MIN=ANGL(IyJ)
LOCI=I
LOCJ=J

219
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CONTINUE

CONTINUE

SW(LOCI =1

SW(LDCJ) =1

SF(SFCT)=L0OCI

SF(SFCT+1)=L0OCJ

FINDI THE SMALLEST ANGL FOR LOCI AND LOCJ

MIN=1000

0o 90 I=1sHN
IF(SW(I).EQ.1) GO TO 90
ISUM=ANGL(LOCI»I}+ANGL(LOCJ,I)
IF(ISUM.GE.MIN) GO 7O %0
MIN=ISUM
LOCK=I

CONTINUE

SW(LOCK)=1

SF(SPCT+2)=L0OCK

SFCT=8FCT+3

IF(LASTSF.EQ.N.ANI.SFCT.ER.N+1) GO TO 130

AEOVE IS CASE OF N A MULT OF 3 AND FINISHED
IF(LASTSF.EQ.N+2.AND.SFCT.EQ.N) GO TO 95

AROVE IS CASE OF N ONE OVER MULT OF 3 AND FINISHED
IF(LASTSF.EQ.N+1.AND.SPCT.EQ.N-1) GO TO 110

AROVE IS CASE OF N TWO OVER MULT OF 3 AND FINISHED
NOT YET FINISHED

GO TO 75

SFECIAL LAST CASES

CASE OF N OMNE OVER MULT OF 3
Do 100 I=1sN

IF(SW(I).EQ.0) GO TO 105
CONTINUE
SF(SFCT) =1
SP(SFCT+1)=8F(1)
SF(SPCT+2)=5F(2)
GO TO 130

CASE OF N TWO OVER MULT OF 3
L=0
Do 115 I=1sN
IF(SW(IY.EQ.1) GO TO 113
IF(L.EQ.1) GO TO 120
L=L+1
J=I
CONTINUE
K=1
JsK ARE THE TWO UNUSED ROWS

MIN=1000

D0 125 I=1sN
IF(I.EQ.J) GO TO 125
IF(I.EQ.K)> GO TO 125
ISUM=ANGL (J» I)+ANGL (K- I)
IF(ISUM.GE.MIN) GO TO 1295
MIN=ISUM
LOCK=1

CONTINUE

SF(SPCT)=J

SF(SFCT+1)=K

SF(SFCT+2)=L0OCK

END OF SELECTING THE ROW VECTOR TRIFLES -=——————77—

CONTINUE

CALCULATE THE INNER FRODUCTS ———====wmm=w==========

I1,I11,1I2 ARE USED IN AArAS,SF AND DET

KsLsM ARE USED IN A

THE INNER PRODUCTS ARE CALCULATED FOR ONLY
THE SELECTEDL TRIFLES



Three dimensional x-projection method for solving systems of linear equations

00 150 I=1sLASTSFs3

I1 I+1

Iz I+2

R SFCI)

L SP(I1)

M SF(I2)

SUMKL = 0.

SUMKM = 0.

SUMLM = 0.

N 140 J=1sN
SUMKL+A(Ks D XA(L J)
SUMKM+A(Kr JI)XA (M J)
SUMLM+A(Ls DXA(Ms J)

W hinn

n

o)
c
=
=
nono

140 CONTINUE

SQRKL
ARCI)

SUMKLXSUMKL

SUMRKMXSUMLM-SUMKL

AS(I) 1.-SQRKL

SQRKM SUMKMXSUMKM

AA(I1l) = SUMKLXSUMLM-SUMKM

AS(I1) = 1.-SARKM

SQRLM = SUMLMXSUMLM

AA(I2) = SUMKLXSUMKM-SUMLM

AS(I2) = 1,-SORLM

DET(I) = 1. + 2.XSUMKLXSUMKMXSUMLM-SQRKL-SQRKM-SQKLM

150 CONTINUE

C
c
c

C
c

=== END' OF INNER FRODUCT CALCULATIONS —————————— e

[0 1460 I=1sN
OLDXA(I)=X(I)
OLDOX(I)=.00005
OLDDX IS INITIALIZED NON-ZERD TO FREVENT
ZERO DIVISION WHEN CALCULATING THE FIRST ROX
FASTX(I)=X(I)

160 CONTINUE

oo0Ooo0

OO0 0On0o0

[w]

Xk K k¥
XK XKk
¥%xXk¥ END OF THE OVERHEAD (INITIALIZATION) CALCULATIONS %xk¥x¥
OKHOK KK KKK KK K 3K K KK KK K K 5K K 3K 3K 3K K 3K 0K 33 80K K 3K oK 30K 3K K 3K 0K 3K 5 3 ok 3 3K 0K K % K

IF(ISUMY.EQ.0) ISUMY=9999999

REEKKKKEKRRKKRX START OF THE CYCLE LOOF 3KKK3IOKK kKKK KKK KKKk KK
KAk KKK
kK XXXk

D0 280 ICYCLE=1,MAXCYL
—--= CHECK IF SUMMARY INFORMATION IS TO BE FRINTED —-—-———-

IFCICYCLE/ISUMYXISUMY .NE.ICYCLE) GO TO 190
FRINT SUMMARY INFORMATION
DFR=0.
DO 180 J=1sN
nDFPSUM=0.
D0 170 K=1sN
DFSUM=DFSUM+ A(JsK)%XX(K)

170 CONTINUE

DFSUM=E(J)-DFSUM
DFR=DFR+ DFSUMXDFPSUM

180 CONTINUE

c

WRITE(108,510) ICYCLEsDFR» (X(K)sK=1sN)

==~ END OF FRINT SUMMARY INFORMATION —===mee—————mmme

190 CONTINUE

C
C
C

-—-— ITERATION LOOF. COMFUTE THE NEW
—-—-- AFFROX. SOLUTIION VECTOR BY FROJECTING
=== ONTO X(K)¢X(L) AND X(M)

DO 220 I =1,LASTSF:3
I1 =I+1
I2 = I+2

23
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K
L
M

SF((I)
SF(I1)
SF(I2)

muon

C --- IyI1,12 ARE USED IN AAsAS SF AND DET
C -—— KsLsM ARE USELD IN A

c

O0OrRR
[
C O

240

C _—
C ——

250
260

DFSUMK =
DFSUML =
DFSUMM =
no 200 J
DPSUMK
DFSUML
DFSUMM
CONTINUE
DFSUMK = E(K)-DIFSUMK
DPFSUML = B(L)-DFSUML
DFSUMM = B(M) —DFSUMM
COEF1=(DFSUMK*AS (I2)+DFSUMLXAACI) +IFSUMMKXAACIL) ) /JDET(I)
COEF2=(DPSUMKXAAC(I)+DPSUMLXAS(I1)+DFSUMMXAA(T2)) /DET(I)
COEF3=(DFPSUMKXAA(I1)+DFSUMLXAA(IRZ) +DFSUMMXAS(I) ) /DET(I)
ng 210 J=1sN
X(D=X(J)+COEF1XA(Ks J)+COEF2XA(L» J)+COEF3IXA (M, D)
CONTINUE
CONTINUE

DFSUMK+X (J) XA (K J)
DFSUMLAX () XA(L s J)

-
1sN
= DPSUMMAX (D) XA(My )

MAXDIF=0.

nn 230 J=1isN
DIFF=DARS(X(J)-FASTX(J))
IF(DIFF.GT.MAXDIF) MAXDIF=DIFF
FASTX (1)=X{J)

CONTINUE

IF(MAXDIFL.LE.TOL) GO TO 290

END' OF THE CYCLE CALCULATIONS ———-======mo—mmm———
IF(ICYCLE/IFRTXIFRT.NE.ICYCLE)GO TO 280

ATTEMFT TO ACCELERATE
Lo 240 J=1sN
DX (J)=X(J)-0LOX ()
OLDX()y=X(J)
RIK{J)=DX (> /0LLDX{d)
OLDOX (J)y=0X{J)
CONTINUE

IF RDX VALUES ARE ALL WITHIN RDXDIF OF EACH
OTHER THEN ACCELERATE TO THE SOLUTION

L=N-1
no 260 I=1sL
K=I+1
0o 250 J=KsN
IF(DARSC(ROX(I)-ROX(J)).GT.ROXDIF) GO TO 280
CONTINUE
CONTINUE

no 270 I=1sN
X(Id= (X(I)-DX(I)) 4+ DX(I)/(1,0-ROX(I))
FASTX(I)=X(I)
OLDDX(I)=0.,000001
OLDDX IS MADE NON-ZERO TO FREVENT Z&ERO -~ * -
DIVISION ON THE NEXT CYCLE
OLIX(I)=X(I)
CONTINUE

C

c

280 CONTINUE

C *Xx% *kxK
C kXX XKk
£ kKKK KKKKXKX END OF THE CYCLE (280 LOOF) ¥dokkkickkkdkkkkkdokkkx
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T
L Xkkkkkkkkkkk SOLUTION FOUND sRkkskok Kok koK KoKk oK 5o 3KOK 30K 30K KOR KOk KK X
C
290 CONTINUE
€ CALCULATE (RsR)
DPR=0 +
ng 310 J=1sN
LFSUM=0.
no 300 K=1.N
DFSUM=DFSUM. + A(JsKIXX(K)
300 CONTINUE
DFSUM=R(J)-DFSUM
DFR=DFR + DPFSUMXDFSUM
310 CONTINUE
C ——— FRINT THE SOLUTION
WRITE(108s500) ICYCLE,DPRs (X(K)rK=1sN)
c
500 FORMAT(“0“//+“SOLUTION’/‘NO OF CYCLES = 9y
X I%9s’ (ResR) = “»E18.9/70S0LUTION VECTOR FOLLOWS’»
X /07 "#B(F13.7+1X))) .
510 FORMAT(’ AT CYCLE = “+I9s" (ReR) = “»E18.%9/
X * AFFROX. SOLN. VECTOR FOLLOWS’/
X (7 “»8(F13.7+1X)))
RETURN
END



