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Abstract: This work defines valuable terminology
and develops significant techniques for obtaining op-
timal or near optimal solutions to the Rural Postman
Problem.

1 Introduction

This work defines valuable terminology and devel-
ops significant techniques for obtaining optimal or
near optimal solutions to the Rural Postman Prob-
lem. The Rural Postman Problem (RPP) assumes an
undirected, connected graph, G(V, E, R,w : E — zH).
The function w assigns edge lengths and R is an arbi-
trary subset of E. The objective of the RPP is to find
a minimum length tour in G that includes each edge of
R at least once. R is referred to as the required subset
of edges.

Many practical routing problems involve finding paths
that traverse a set of arcs in a graph. Road sanding
trucks may service road segments belonging to their
governmental jurisdiction, while using roads belonging
to another jurisdiction for access. The challenge is to
find an efficient route.

The difference between the Rural Postman Problem
(RPP) and the classical Chinese Postman Problem
(CPP) is that the desired tour in the CPP is required
to include all edges of G whereas the desired tour in the
RPP is only required to include the edges of R. Find-
ing the optimal tour that solves the RPP is a harder
problem than finding the optimal tour that solves the
CPP. The RPP is NP-complete. The undirected CPP
can be solved in polynomial time.
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The classical CPP can be easily solved if all vertices of
(i have even degree since, then, ¢ is an Euler graph.
Any Euler tour in G is a solution to the classical CPP.
Each such Euler tour includes each edge of G exactly
once and has tour length given by the sum of the edge
lengths.

Even when G is not an Euler graph, an optimal tour
solving the CPP can still be constructed by carefully
selecting edges that are to be repeated during a tour.
We generalize the terminology and the techniques from
the CPP to develop a basic polynomial-time, deter-
ministic algorithm for finding a near-optimal solution
to the RPP. Our techniques find a superset of R, say Q,
for which the subgraph of G induced by Q is connected.
We define the Even Parity Completion of Q relative to
(i, denoted Completiong(Q). Completiong(Q) is an
Euler multigraph that naturally determines a tour in
(' containing each edge of R. We give an example
to illustrate that the basic technique does not always
produce an optimal RPP tour. However, we note that
there is a superset, say S, of R having the property
that our near optimal technique, when applied to S
rather than R, finds the optimal tour for R. Hence, we
apply various strategies, including genetic algorithrns,
to find a suitable set S.

2 The Rural Postman Problem and
the Chinese Postman Problem

We use the graph theory terminology presented
by Liu [13]. The Rural Postman Problem
(RPP) assumes an undirected, connected graph,
G(V,E,R,w: E — ZF). The function w assigns edge
lengths and R is an arbitrary given subset of E. The
objective of the RPP is to find a minimum length tour
in G that includes each edge of R at least once (8].
R is referred to as the required subset of edges. The
RPP, is a transformation from the Hamiltonian Clir-
cuit problem, and, hence, is NP-complete [14]. The
RPP remains NP-complete even if w(e) = 1 for all e
in E [8]. The special case of the RPP that arises when
the subset of required edges, R, is the set of all edges,



E, is the classical Chinese Postman Problem (CPP).
A deterministic, polynomial-time heuristic for solving
the CPP is due to Edmonds and Johnson [6] and is in-
cluded in the book by Evans and Minieka [7]. We will
present the heuristic after we define the Even Parity
Completion of a subset of edges in a graph.

We note that the classical Graphical Steiner Tree
Problem (GSP) is a vertex variation of the edge-
oriented Rural Postman Problem. Specifically, a so-
lution to the RPP is a tour of minimal length that in-
cludes all edges in a required subset of edges. On the
other hand, a solution to the GSP is a {ree of minimal
length that includes all vertices in a required subset
of vertices. The GSP is also NP-complete and numer-
ous research articles deal with finding near optimal or
optimal solutions to this problem [1].

3 Even Parity Completion of a Subset
of Edges

Motivated by the well known theorem stating that an
undirected graph has an Euler tour if and only if it
is connected and its vertices are all of even degree,
our research defines, by construction, the Even Parity
Completion of () relative to G where @ is any given
subset of edges in G. We denote such a completion
by Completiong(Q). In the special case that @ is E,
the set of all edges, we abbreviate the terminology to
the Even Parity Completion of G and the notation to
Completion(G).

We first let Gg(Vg, @) be the subgraph of G induced
by Q. That is, for a given subset, say @, of edges in
G, Vg is the set of all vertices incident to any edge
in Q. If each vertex in Gg has even degree, then the
Completiong(Q) is Gg. Otherwise, we

Step 1 Construct a complete graph G,, derived from
G, on the odd degree vertices of Gg.

Step 2 Find a minimum weight matching on Gy,.

Step 3 Construct Completiong(Q) by augmenting
Gg to obtain the multigraph that results from
including, or replicating if already included, the
edges in G that correspond to the minimum
weight matching on Gj.

In Step 1, Gy is a complete graph on the set of odd
degree vertices of Gg. For each pair of odd-degree
vertices in G, say z] and z}, the associated edge
weight in the complete graph, G'Q, is assigned to be
the length of a shortest path in G between z} and z5.
Edmonds and Johnson and others have presented

polynomial algorithms for finding a minimum weight

matching on a graph as required in Step 2 above.
(5, 7]. '

In the third step of the construction, we let

Figure 2: The Completion of G(V, E,w)

C'ompletiong(Q) be the multigraph obtained from (/g
by including, replicating if previously included, an
edge (and its length) from (7 each time the edge is
part of a selected path in G that corresponds to an
edge in the minimum weight matching on G7,.

The Completion of G for the graph in Figure 1 is easily
determined and is indicated in Figure 2. That is, for
Figure 1, the complete graph, (', derived from G on
the odd degree vertices of G, is a graph with a single
edge from v to vy. The weight of the edge is 5. The
minimum weight matching on G’ is, of course, this
single edge. Replicating the edge {vg,v1} in G, we
obtain the Completion of G as shown in Figure 2.

A Completion of @ relative to G is shown in
bold line style as part of a later figure, Fig-
ure 4(c). The graph (7 is shown in Figure 4(a).
(ig, including the set of five edges given by @ =
{{0,1},{1,2},{1,3},{2,4},{3,5}}, is shown with bold
line style in Figure 4(a). The complete graph Gb, de-
rived from G, on the odd degree vertices of Gg is in-
dicated in Figure 4(b). Edge weights in Figure 4(b)
are determined by computing shortest paths in Fig-
ure 4(a). The minimum weight matching of G con-
sists of the edge {0,1} and the edge {4,5}. We obtain
Completiong(Q), by augmenting Gg with the edge
{4,5} and a copy of the edge {0,1}. Completiong(Q)
is shown in bold line style in Figure 4(c).

C'ompletiong (@) is not necessarily unique since there
may be different, minimum-weight matchings of (}"Q,



and since there may be different minimum-length
paths selected in G that correspond to an edge in Gy
For example, depending on how ties are broken for the
graph in Figure 1, Completion(G) is either the graph
G with edge {vg, v} replicated or the graph (7 with
two edges, {vo,v2} and {vy,vq}, replicated. Figure 2
illustrates the selection of the single edge {vg, v1}. One
can show that the sum of the edge weights in any two
Completions of Q relative to G is the same.

It is easy to show that each vertex in Completion; (Q)
has even degree (that was the objective!). It
is also easy to show that if Gg is connected
then Completiong(Q) is connected. Whenever
Completiong(Q) is connected, then Completiong(Q)
has an Euler tour. Any Euler tour of Completiong(Q)
naturally determines a postman tour in (7 that con-
tains each edge in Q and, likely, many edges not in Q.
Edges in the postman tour, whether or not they are
in @, may be repeated one or more times. However,
if Gq is not connected, then Completiong(Q) may or
may not be connected.

4 Solving the Chinese Postman
Problem

A polynomial time deterministic heuristic for the CPP
is presented in [7]. If all vertices of G have even degree,
an Euler tour of G exists and is a solution to the CPP.
In this case, several Euler tours exist; but, they differ
from each other only in their routing and each Euler
tour includes each edge of G exactly once. Hence, any
Euler tour is minimal and, since it traverses each edge
one and only one time, has length given by the sum of
the edge weights.

When some vertices of G have odd degree and, con-
sequently, G does not have an Euler tour, an optimal
tour for the CPP can still be easily constructed by
carefully selecting edges that are to be repeated [7].
The construction is done as follows:

Step 1 Construct an Even Parity Completion of G.

Step 2 Find a postman tour of G corresponding to

an Euler tour of the Even Parity Completion of
G.

5 Our Basic Rural Postman Problem
Heuristic

Our basic heuristic for solving the RPP for the graph
G(V, E, R,w), where R is the set of required edges and
w is the set of edge weights, is outlined in the following
steps.

Step 1 Find a “good” Q such that R C Q <
E and Gq is connected. Ggq is the subgraph in-
duced by Q.

Step 2 Construct the FEven Parily Completion of
Q relative to G, Completiong(Q). Each ver-
tex in Completion;((Q)) has even degree and
Completions(Q) 1s connected.,

Step 3 Find an Euler tour of Clompletion(Q).

Step 4 Find the postman tour in G determined by
the Euler tour of
Completiong(Q).

We illustrate each of the four steps in Figures 3, 4. 5,
and 6, respectively. In Step 1, shown in Figure 3,
R is {{0,1},{2,4},{3,5}} and we determine that  is
RU{{l,2},{1,3}} as follows. We start with the graph
G(V, E, R,w)in Figure 3(a). The required set of edges,
R, is illustrated with a bold line style and the edge
weights are also indicated. The component of R con-
sisting of the edge {0,1} is contracted to a vertex 4.
Similarly, the component of R consisting of the edge
{2,4} is contracted to a vertex vg and the component
corresponding to the edge {3,5} is contracted to a ver-
tex vc. A complete contraction graph, say H, with
vertex set {v4,vp,vc} is constructed. The weight of
an edge in A is assigned to be the shortest distauce
between the corresponding components in G. Finally,
we find the minimum spanning tree of H to be the two
edges {vq,vp} and {va,vc}. The graph H is shown
in Figure 3(b) where the minimum spanning tree is
shown with a bold line style.

Continuing with Step 1, the path edges in G corre-
sponding to the edges of the minimum spanning tree
of H are used to augment the edges of R and to obtain
Q. In our example, the single edge path from compo-
nent A to component B is {{1,2}} and the single edge
path from component A to component C is {{1,3}}.
Hence, @ = RU {{1,2},{1,3}}. Edges in Q are those
indicated with a bold line style in Figure 3(c).

In Step 2, we construct C'ompletiong(Q). Figure 4(a)
1s the same figure as Figure 3(c) where the edges
in @ are indicated with a bold line style. Edges
in Completiong(Q) are those edges indicated with
a bold line style in Figure 4(c). Construction of
C'ompletionG(Q) using the example from Figure 4 was
discussed previously in the section on the Even Parity
Completion of a Subset of Edges.

Finding an Euler tour of Completiong(Q) in Step 3
is a well known construction since Completiong(Q) is
connected and each vertex has even degree. An Euler
tour is illustrated in Figure 5.

Converting an Euler tour of Completiong(Q) to a
postman tour in G is trivial since any edge that is repli-
cated in Completiong(Q) is simply traversed multiple
times in G. The rural postman tour of G that is de-
termined by the Euler tour in Figure 5 and includes
all edges of R = {{0,1},{2,4}, {3,5}} is illustrated in
Figure 6. The length of the tour constructed by our
basic RPP heuristic is 26.
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Figure 3: The graph G(V, E, R,w) and finding @ so that the subgraph induced by Q is connected.

Figure 5: An Euler tour of the Completion of Q rela-
tie to G.

6 Opportunities for Improving Basic
RPP Heuristic

Our basic Rural Postman Problem heuristic does
not always produce the optimal postman tour for
a required subset of edges. Figure 7(a) illustrates
a graph G with R = {{0,1},{1,2},{3,4},{4,5}}.
Our Step 1 will append the single edge {1,4} to
R to obtain the connected @ as illustrated with a
bold line style in Figure 7(b). OQur Step 2 will
then construct Completiong(Q) as the multiset R U
{{0,3},{1,4},{2,5} } where the edge {1,4} is repeated.
Completiong(Q) is illustrated in Figure 7(c). The
postman tour in G, determined by the Euler tour of

Figure 6: A postman tour in G including all edges of
R.

C'ompletiong(Q), traverses the edge {1,4} twice while
traversing all other edges once. The postman tour has
length 10. Clearly, a postman tour that simply tra-
verses the perimeter of the graph, and does not tra-
verse the edge {1,4} at all, will contain all of the re-
quired edges and will have length of 8.

In Figure 8, we illustrate that our basic RPP heuris-
tic may actually find a better postman tour for a re-
quired edge subset, R, if we artificially force R to in-
clude one or more other edges from E — R. To il-
lustrate, we again use the graph G in Figure 7(a)
with B = {{0,1},{1,2},{3,4},{4,5}} and we ob-
tain R' = RU {{0,3}} by forcing the “required” set
to also include {0,3} as illustrated by Figure 8(a).
Step 1 of our basic RPP heuristic determines that
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Figure 4: Constructing the Even Parity Completion of Q relative to G.

the R’ is already connected and so Q is R’. In Step
2, Completiong(Q) augments R’ by including edge
{2,5}. Completiong(Q) is the graph consisting of
each edge in the perimeter included exactly one time.
Hence, the postman tour resulting from application of
our basic RPP heuristic will traverse the perimeter of
G without ever using the edge {1,4}. As indicated be-
fore, the tour has length 8, an improvement over a tour
of length 10.

Since forcing additional non-required edges may im-
prove the tour produced by our basic RPP heuristic,
we are motivated to develop various strategies to select
additional edges to augment R.

It is important to note that, for any required subset of
edges, R, there is a set R’ for which Completiong(R')
corresponds to the optimal RPP tour. However, it
may or may not be true that the “good” Q determined
by our connection process in Step 1 of the basic RPP
heuristic is such an R'.

Our improved RPP heuristic algorithms are Force One
Edge, Force Two Edges, Iterated Force One Edge, and
The Genetic Algorithm.

In the following sections, we describe the improved
algorithms. It is interesting and useful to note that any
of the four improvements could be used to improve any
underlying RPP heuristic. We, in particular, use the
improvements with the basic RPP heuristic outlined
previously.

6.1 Force One Edge

For the RPP problem indicated by G(V, E, R,w), the
Force One Edge improvement to the basic RPP heuris-
tic consists of the following three steps.

Step 1 Apply the basic RPP heuristic using R as the
required edge set.

Step 2 For each e € E — R, apply the basic RPP
heuristic using the required edge set given by Q =
RU {e}.

Step 3 Choose the best tour resulting from Step 1
and Step 2.

Clearly, application of the Force One Edge heuristic
will do no worse than the basic RPP heuristic. The
order of the Force One Edge heuristic is n*J(m) where
n is the number of elements in E — R and ¥(m) is the
order of the basic RPP heuristic.

6.2 Force Two Edges

For the RPP problem indicated by G(V, E, R,w), our
Force Two FEdges improvement to the basic RPP
heuristic consists of the following three steps.

Step 1 Apply the basic RPP heuristic using R as the
required edge set.

Step 2 For each e;,e; € E — R, apply the basic RPP
heuristic using the required edge set given by Q =
RU {ey, ez}
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Figure 7: An suboptimal tour produced by the basic
RPP heuristic.
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Step 3 Choose the best tour resulting from Step 1
and Step 2.

Clearly, as with Force One Edge, application of the
Force Two Edges heuristic will do no worse than the
basic RPP heuristic. The order of the Force Two Edges
heuristic is n?+J(m) where n is the number of elements
in £ — R and ¥(m) is the order of the basic RPP

heuristic.

6.3 Iterated Force One Edge

Motivated by the work of Alexander and Robbins
for improving near optimal solutions to the (iraphi-
cal Steiner Tree Problem [1], we describe our Jteraled
Force One Edge heuristic for the RPP. The heuristic
consists of the following steps.

Step1 Let @ = R.

Step 2 Apply the basic RPP heuristic using Q as the
required edge set.

Step 3 Repeat
For each edge e € E — @, apply the basic RPP
heuristic using S = Q U {e} as the required edge
set.
Determine the best e € E—Q and let Q = QU{e}.
Until (no improvement or Q = E).

Again, the Iterated Force One Edge heuristic will do no
worse than the basic RPP heuristic. In the special case
that the [terated Force One Edge heuristic stops after
one iteration of the repeat loop, the Iterated Force One
Edge produces the same result as the Force One Edge
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Figure 8: An improved tour produced by the basic
RPP heuristic after forcing an additional edge.

heuristic. When the Jterated Force One Edge heuristic
stops after two iterations of the repeat loop, the two
successful edges chosen by the first and second itera-
tions of the repeat loop may or may not correspond
to a pair of successful edges chosen by the Force Two
Edges heuristic. The order of the [terated Force One
Edge heuristic is n? x J(m) where n is the number of
elements in £ — R and J(m) is the order of the basic
RPP heurisitic.

6.4 Genetic Algorithms

The GA works by selection, recombination, and mu-
tation on the fixed length character strings [9, 10,
11, 12, 16]. Several researchers have investigated the
benefits of solving combinatorial problems using ge-
netic algorithms. Davis [4], Goldberg [9], Rawl-
ins [16], Corcoran and Wainwright [3], and Blanton
and Wainwright (2] provide excellent examples. The
genetic algorithm implementation used in this research
is iIbGA [3].

We use a bit string chromosome to represent a RPP
tour for G(V, E, R,w). The chromosome is a bit string
with length given by cardinality(E) - cardinality(R).
The bit positions in the chromosome are indexed by
the edges of E' that are not in R. If an allele is 1,
we force the inclusion of the corresponding edge into
the subset of required edges. We apply the basic RPP
heuristic to the augmented set of “required” edges, say
R’

As an example, Figure 9(a) illustrates the same graph
and the same required set that we have used in otlier
illustrations. R = {{0,1},{2,4},{3,5}} is the subset
of required edges as indicated by a bold line style. The
edges in £ — R are labeled by e, ey, ..., 5. Figure 9(b)
illustrates the augmented set of required edges that is
determined by the chromosome (0 1 0 1 0 0 0). That
is, we force the inclusion of the edge e; and e3 and the
augmented set of edges is R’ = RU{{0,2},{1,3}}. R/



Figure 10: Basic RPP heuristic applied with chromosome (01010 0 0).

is a connected set of edges as indicated with a bold line
style in Figure 9(b). Since R’ is already connected,
Q) is selected to be R’ in Step 1 of the basic RPP
heuristic. Step 2 of the basic RPP heuristic further
includes edge eg = {4,5} during the construction of
Completiong(Q). Completiong(Q) is illustrated with
a bold line style in Figure 10(a). The postman tour
resulting from Step 3 and Step 4 of the basic RPP
heuristic is illustrated in Figure 10(b). The length of
the tour resulting from the fitness evaluation of the
chromosome (0 1 0 1 0 0 0) is 24. The basic RPP
heuristic produced a tour of length 26.

Our generational genetic algorithm uses simple
crossover. Qur mutation is bit inversion. The
crossover rate is 1.0 and the mutation rate is 0.05.
The population size was 200 for one set of runs and
500 for another set of runs.

7 Data Sets and Results

The data sets used in our research are modifica-
tions of the eighteen benchmark steinb data sets that
are used for the Graphical Steiner Tree problem.
The data sets are available from the OR Library at
hitp://mscmga.ms.ic.ac.uk. The vertices, edges, and
edge weights indicated in the steinb data sets are main-
tained. The set of required vertices is simply ignored
and replaced with a set of required edges. The set

of required edges for each of our graphs was deter-
mined by doing a Bernoulli selection on each edge
in the set of all edges. The resulting data sets were
fixed and, rather than being named steinbx, are named
rppbx. The eighteen rppbx data sets are available from
hitp://euler.utulsa.edu/ " schoend.

The results of applying our various techniques to the
rppbx data sets are listed in Table 1. Each row in the
table corresponds to one of the data sets. The cardi-
nalities of the vertex set, the edge set, and the required
edge subset are indicated. The remaining columns give
the length of the rural postman tour that is deter-
mined by the basic RPP heuristic, the Force One Edge
heuristic, the Force Two Edges heuristic, the Iieraled
Force One Edge heuristic, the Genetic Algorithm with
population size 200, and the Genetic Algorithm with
population size 500. The first four heuristics are de-
terministic. The two genetic algorithms are not deter-
ministic. The best tour for each data set is indicated
with a “*” in Table 1.

In general, the Iterative Force One Edge heuristic pro-
duced the best rural postman tours. The success of
the technique can be explained by noting that when-
ever there are three or four independent edges whose
forced inclusion will improve the performance of the
basic RPP heuristic, the [terative Force One Edge
heuristic can most easily find the edges. The frequent
ties among the Force One Edge, the Force Two Edges,



card | card | card | Basic | Force | Force GA GA
X V E R | RPP | One Two [ter. 200 500
1 50 63 12 ] 192 138 F [ 188 F [ 188 F [ 188 F [ I88 *
2 50 63 12 | 197 197 196 * | 197 200 197
3 50 63 12 7139 134 130 [ 130 * [ 130 * | 142
4 50 | 100 20 1 150 146 ¥ | [46 * | 146 * | 146 * | 146 * |
5 50 | 100 20 | 171 167 166 161 * [ 179 168
6 50 100 20 | 161 156 ¥ [ 156 * | 156 * | 156 * | 160
7 75 94 18 | 268 260 253 250 * 1 260 253
8 75 94 18 1 228 211 200F [200*F [ 200 F | 209 F
9 75 94 158 | 295 291 291 291 303 200 *
10 75 150 30 | 286 285 283 * | 283 * | 294 284
11 75 150 30 | 249 * | 249 * | 249 * | 249 * | 267 262
12 75 [ 150 30 | 262 257 253 ¥ [ 253 ¥ 1201 267
13 100 125 25 | 315 303 301 * | 301 * | 304 306
14 100 | 125 25 | 340 337 335 332 347 327 *
15 100 | 125 25 | 292 292 284 F [ 284 F 1 330 287
16 100 | 200 40 | 410 404 400 396 * | 437 521
17 100 | 200 40 | 350 347 344 336 * | 391 452
18 100 | 200 40 | 374 370 * | 370 * | 370 ¥ | 411 477

Table 1: Rural Postman Tour Lengths, rppbx Data Sets

and the Iterated Force One edge heuristics indicates
that, frequently, there are only one or two edges whose
forced inclusion into the required edge subset are key
to the improved performance of the basic RPP heuris-
tic. The four instances where the Force Two Edges
heuristic finds a better tour than the [terated Force
One heuristic indicates that the single edge selection
made during the first iteration of the Iterated Force
One heuristic actually detracts from finding a good
pair of edges for forced inclusion into the required edge
set. Although there are many instances where the ge-
netic algorithm produced a tie tour and two instances
where it was the only heuristic that produced the best
tour, the overall poor performance of the genetic algo-
rithm can be explained by noting that too much time is
spent examining chromosomes that contain many ls.
Such a chromosome forces the inclusion of numerous
edges that are not particularly helpful for isolating a
small number of key edges. However, the other heuris-
tics that we developed as part of this research, Force
One Edge, Force Two Edges, and Iterated Force One
FEdge, performed extremely well.

8 Future Work

We have improved our data structures and code effi-
ciency so that we can examine data sets with a larger
number of vertices, edges, and required edges. We are
also investigating strategies for biasing the genetic al-
gorithm to favor chromosomes with relative few 1s so
that the algorithm will make an earlier identification
of the key edges that improve the performance of the
basic RPP heuristic.

Perhaps more interesting is the exploration of an al-
ternate basic RPP heuristic. One of the useful obser-
vations concerning all of our improved RPP heuristics
is that they can be used with any underlying ‘basic’
RPP heuristic.

During the first step, the basic RPP heuristic used
for this research finds a good @ so that R C @ and
@ is connected. During the second step of the basic
RPP heuristic, we construct the Even Parity Comple-
tion of Q relatively to G. It may prove to be useful to
essentially reverse these two steps. That is, we will ex-
amine the tours resulting from, first, constructing the
Even Parity Completion of R relative to G, which may
or may not be connected, followed by inserting addi-
tional edges into the Even Parily Completion so that
the resulting construction is connected. This approach
was previously suggested by Orloff [15]. The challenge
is to add a small number of short additional edges so
that the even parity at each vertex is maintained.
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