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ABSTRACT

Recent research in Bin Packing has almost exclusively been in
two dimensions. In this paper we extend the classic Bin Packing
problem to three dimensions. We investigate the solutions for
the three dimensional packing problem using first fit and next fit
packing strategies with and without genetic algorithms. Five
data sets were used to test our algorithms, both random and
contrived. They range from 50 to 500 packages. We also stud-
ied several existing crossover functions for the genetic algo-
rithm: PMX, Cycle, and Order2. A new crossover function,
Randl, is presented. The genetic algorithm was tested using a
randomly generated initial population pool, and a seeded initial
pool. The seeded pool was generated from a package ordering
produced by rotating and sorting the packages by decreasing
height. Our results show the seeded genetic algorithm using
Next Fit and PMX produced the best overall results for the data
sets tested. The seeded genetic algorithm using Next Fit and
Order2 provided the best results considering both rapid execu-
tion time and packing efficiently. We found genetic algorithms
to be an excellent technique for yielding good solutions for the
three dimensional packing problem.

INTRODUCTION

Researchers have recently become interested in solving large
combinatorial optimization problems. Finding a solution re-
quires an organized search through the problem space. An
unguided search is extremely inefficient since many of these
problems are NP-complete. The Bin Packing problem has been
shown to be NP-complete. It is one of the classic NP-complete
problems. It is impossible to optimally solve any of these prob-
lems, except for trivial cases. Consequently, research has fo-
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cused on approximation techniques which provide efficient,
near optimal solutions. Some of these techniques, which would
be applicable to bin packing, include heuristic techniques,
simulated annealing, neural networks, and genetic algorithms
(GA). Papadimitriou and Steiglitz [23] and Parker and Rardin
[24] present several classical techniques for solving the bin
packing problem. Linear and Dynamic Programming tech-
niques have not been used much in practice since the classic
approximation algorithms perform so well on simple problems.

The bin packing problem is applicable in a variety of situations.
In computer systems it is used in allocation problems, such as
allocating core memory to programs, or space on a disk or tape.
Two dimensional bin packing can be used to solve the problem
of multiprocessor scheduling with time constraints, The pack-
ages represent the time and memory requirements of tasks, and
the bins represent processors. The knapsack problem is another
closely related problem. In other disciplines, bin packing can be
used in such problems as packing trucks, allocating commercials
to station-breaks on television, and cutting pipe from standard-
ized lengths. The two dimensional problem can be used for
stock cutting, where the packages are patterns which must be cut
from a fixed width roll of material (the bin). The work to date
on the bin packing problem has been almost exclusively in two
dimensions. There has been very little attention given to the
three dimensional case.

In this paper we extend the classic Bin Packing problem to three
dimensions and investigate various solutions to this problem
using genetic algorithms. The rest of the paper is presented as
follows. In Section 2 we review the Bin Packing problem. In
Section 3 we describe the three dimensional Bin Packing prob-
lem. In Section 4 we present an overview of genetic algorithms.
Results and conclusions are presented in Section 5. Future
research issues and related problems are given in Section 6.

BIN PACKING

In the classic bin packing problem, a finite collection of pack-
ages is packed into a set of bins. The packages and bins are
characterized by their weights and capacities, respectively. The



problem can be stated either as a decision problem or as an
optimization problem. In the decision problem it becomes
necessary to determine whether or not there is a disjoint parti-
tioning of the set of packages such that each partition fits into a
bin. That is, given an integer number of bins, determine if all of
the packages fit into the bins. The optimization problem at-
tempts to minimize the number of bins required, or equivalently,
to minimize the amount of wasted bin capacity in the packing.

The bin packing problem is a generalization of the partition
problem. That is, the bin represents a partition size and the
packages must be optimally placed in these partitions. In most
cases, the approximation algorithms (first fit, next fit, best fit,
etc.) are very nearly optimal. Unfortunately, there are worst
case examples which are far from optimal. These cases only
have a few sets of which the packages can belong. Some algo-
rithms (like Modified First Fit Decreasing) have tried to im-
prove absolute bounds by special treatment of these worst cases.
However, worst cases can be constructed for the modified algo-
rithms with similar bounds.

The bin packing problem has many parameters which may be
varied for different applications. Granularity is one such param-
eter. The problem could be as small as packing parcels into
shipping containers, or as large as packing shipping containers
into airplanes. Consequently, a hierarchy of packing problems
of differing granularity may need to be solved optimally. The
other parameters are variations in packages and bins. See Hu
[15] for a more details on bin packing.

The classic bin packing problem is expressed using one dimen-
sional packages. This approach blindly generates partitions so
that the sum of the one dimensional package parameters in each
partition does not exceed the bin capacity. This parameter is
typically stated as the package weight. Clearly, the problem is
equivalent if the parameter represents a single spatial dimension.
In the real world, a single spatial dimension is often not enough.
Problems involving two or three spatial dimensions are typical.
The results of one dimensional bin packing may not apply in
these cases.

In many problems, packages must arrive at their destinations
according to some time constraint. This may be in the form of a
deadline ("must arrive before Friday™) or a time window ("must
arrive between Tuesday and Friday"). The algorithm must
ensure the package will not be late. In the case of time win-
dows, it also should not arrive too early. Time constrained
scheduling is a research topic in itself, and is a non-trivial addi-
tional constraint in bin packing. In addition to individual
package attributes, the set of packages themselves may follow a
particular distribution. A random distribution might be exhibit-
ed in some cases, and a uniform distribution in others. The
distribution may be skewed so that packages may only belong to

one of a finite number of categories. The package parameters
may be nearly equal or relatively small in comparison to the
corresponding capacity of the bin. Furthermore, different
package parameters could have different distributions.

The classic bin packing problem does not take these parameters
into consideration. In fact, the additional parameters make the
problem harder. However, by holding all of the additional
parameters to some constant value, the harder problems all
degenerate back into the classic problem. That is, the classic
Bin Packing problem is a special case of the harder problems.
For every package attribute there is a corresponding capacity or
maximum value for the bin. Generally, there can be no single
package with an attribute exceeding the maximum value set by
the bin. Otherwise, the package could never be packed. Inter-
esting cases occur when the parameters differ in relation to one
another. For example, when the bin is rectangular and the
packages are all square.

In the classic problem, the bin has a fixed capacity. For multiple
dimensions, the analogous bin would have fixed capacity in
every dimension. Thus, a two dimensional bin would define a
rectangle, and a three dimensional bin would define a "closed
box". A common variation of the classic problem is to use a
single, open-ended bin. Used primarily for two or more dimen-
sions, the problem is to minimize the value of the open dimen-
sion subject to all other constraints. When using the level tech-
nique, this method can be transformed to the classical problem.
This is done by packing each level of the single bin into the
multiple closed bins, as if each level were a single package. A
less common variation uses multiple, dissimilar bins. The dis-
tribution of the bins could be like the distribution of package
sizes. They could be random, uniform, skewed, etc. It is analo-
gous to packing a fleet of trucks of different sizes and capaci-
ties.

One Dimensional Heuristic Techniques for Packing

Many near-optimal heuristic techniques have been developed
for the bin packing problem. None of these techniques guaran-
tee an optimal packing. However, many techniques approximate
the optimal packing within a constant bound. The three best-
known approximation algorithms in bin packing are Next Fit,
First Fit, and Best Fit. There are many other algorithms,
however, most are variations or refinements of these basic
methods and only offer modest improvements in packing effi-
ciency. For more details, see Floyd and Karp [12], Garey and
Johnson [13] and Johnson ef al. [16].

Next Fit is the simplest and easiest algorithm to implement.
Beginning with a single bin, the packages are taken from the list
in order, and placed in the next available position. When there
is mot enough room to pack the current package, a new bin is



started. No attempt is made to place packages in previous bins
and the packages are considered in the order they appear in the
list. Waste can occur since a new bin is used even when a pack-
age may fit into a previous bin. This is a linear algorithm in both
time and space. Furthermore, it has been shown that Next Fit
generates packings no worse than twice optimal. First Fit places
each package in the first bin in which it will fit. A new bin is
added only when all of the previous bins have been examined
and no space can be found for a package. This algorithm can
use quadratic time in the worst case and is O(n log n) on average
for n packages. However, the packings produced are no worse
than 1.7 times optimal.

Best Fit places each package in the "best" bin in which it will fit.
The best bin is the one with the least amount of space left over
when the package is added. Surprisingly, this algorithm’s
asymptotic performance and packing efficiency is identical to
that for First Fit. Minor differences in packing efficiency are
related to package distribution. That is, for package sizes larger
than 1/6 of the bin size (distributed in the range [1/6..1]), Best
Fit is more efficient than First Fit. For package sizes larger than
1/5 of the bin size (distributed in the range [1/5..1]) the packing
efficiencies are identical. Sorting the packages before applying
these methods can lead to improved results. For example, sort-
ing by decreasing package size before applying First Fit results
in packings which are no worse than 11/9 times optimal, a 28%
improvement. This variation is called First Fit Decreasing.
Similar improvements can be found in Next Fit Decreasing and
Best Fit Decreasing.

Two Dimensional Heuristic Techniques for Packing

Expanding the problem to two dimensions (rectangle packing)
demands different techniques. The first technique uses a
"bottom up - left justified” packing rule, or simply "bottom-
left". Each package is packed as close to the bottom of the bin
and as far to the left of the bin as it can go. This differs from the
one dimensional cases where there exists a permutation of the
packages for which the methods generate an optimal packing.
There are instances where the best bottom-left method produces
packings which are 5/4 times optimal. That is, no matter how
the packages are ordered, the optimal packing can not be found.
The best absolute packing bounds are obtained by sorting the
packages by decreasing width. In the special case of uniform
square packages, bottom-left degenerates into a one dimensional
packing problem. This is because the packages all have the
same height, so they are all placed in rows or levels. Since the
height is constant, the packing of each level need only be con-
cerned with the package’s width. Thus only one dimension is
used in the packing.

The "level" technique is a more recent approach that uses this
idea. The height of each level is determined by the height of the

highest package on that level. A one dimensional (based on
width) approach is used to pack each level. For example, Next
Fit would be used to pack a level until the next package would
not fit. The package would be used to start a new level, and
Next Fit would continue as before. Of course, the packages
could be sorted by decreasing height or width to improve the
result. Surprisingly, the wasted space on each level has no
effect on the asymptotic bounds of the problem. Two dimen-
sional First Fit Decreasing Height has the same bound as one
dimensional First Fit Decreasing, no worse than 1.7 times
optimal.

Classical two dimensional packing generally requires the pack-
ing to be orthogonal and disallows rotation of the packages.
However, some applications may allow rotation or translation of
the packages. Packing efficiency may be improved if each
package is rotated so that its width exceeds its height, or vice
versa. Several theoretical and practical results are presented in
Baker ef al. [1], Carpenter and Dowsland [3], Coffman et al. [5],
Dowsland [9] and Leung et al. [19].

THREE DIMENSIONAL BIN PACKING

Much of the current research in bin packing has centered on two
dimensional strategies. Recall, the most commeon is the level
technique, which places packages level by level into a single,
open-ended bin. The packages are presorted by decreasing
height and a one dimensional strategy is used to pack the width
of the bin. Consequently, two dimensional methods can obtain
the same packing efficiency as the corresponding one dimen-
sional methods.

When extending the problem to three dimensions, it is desirable
to apply the results of two dimensional research to obtain simi-
lar efficiency. Ideally, the packages would be presorted, then
placed level by level, using a two dimensional method to pack
each level. Unfortunately, it is difficult to extend the packing
efficiency in this way. For example, sorting by decreasing
height does not guarantee decreasing width or length. Thus, the
two dimensional packing may be inefficient. On the other hand,
ordering the packages to make the two dimensional packing
efficient may cause wasted space to appear in the height. Unlike
the purely two dimensional problem, the two dimensional
packing stage must deal with a boundary on the second dimen-
sion (the length).

Clearly, three dimensional packing is a very practical problem,
yet proves to be a very difficult problem to solve. Application
of techniques used successfully in one and two dimensional
cases fail to yield good solutions. Consequently, little research
has been done to date in the area of three dimensional packing.
Fenrich et al. [10] presents an application of simulated anneal-



ing to three dimensional packing. However, it can only be used
on small problem sets.

In an attempt to further understand three dimensional packing,
the authors have devised simple three dimensional "next fit" and
"first fit" packing algorithms. These algorithms provide a
measure with which to compare various package orderings.
Thus, the merit of presorting and rotation can be easily evaluat-
ed. They also provide an evaluation function useful for various
optimization processes. The bin model and algorithm specifics
are presented below:

The Bin. Packages are placed in a single, open-ended, three
dimensional bin. To avoid the pitfalls of the bottom-left meth-
od, a level packing technique is used. Two types of levels are
used: horizontal levels along the height of the bin and vertical
levels along the length of the bin. To avoid confusion, the
levels along the height of the bin will be called "slices”. The
levels along the length of the bin are analogous to the levels of
the two dimensional problem, so will remain "levels". Note, the
two dimensional part of the algorithm must deal with a bin
whose end is CLOSED.

3D Next Fit. The algorithm begins with a single level on a
single slice. A Package is placed in the next available position
on the level as long as the width of the bin is not exceeded. In
that case, a new level is created and packing continues. The
"tallest" (actually, the longest) package on the previous level
defines the base of the new level. If at any time the addition of a
package would exceed the bin length, a new slice is created.
The base of the slice is at the height of the tallest package on the
previous slice. The result of the algorithm is the height of the
final packing.

3D First Fit. Just as in next fit, packing begins with a single
level on a single slice. However, instead of placing the package
in the next available position, the levels are searched from the
beginning until a place is found in which the package will fit.
The width must never exceed the bin width, but may exceed the
length of the level as long as the total combined length of all
levels does not exceed the bin length. That is, a level can
expand to accommodate a package, displacing other levels, if
the bin length is not exceeded. Likewise, the height of each
slice can expand to accommodate package heights.

GENETIC ALGORITHMS

Goldgerg [14] describes several ways that genetic algorithms
differ from traditional algorithms. The genetic algorithm works
with a coding of the parameter rather than the actual parameter.
The GA works from a population of strings instead of a single
point. The genetic algorithm uses probabilistic transition rules,

not deterministic rules, and the applications of the genetic opera-
tors causes information from the previous generation to be car-
ried over to the next. In addition, genetic algorithms produce
"close" to optimal results in a "reasonable” amount of time, and
they make no assumptions about the problem space. Further-
more, genetic algorithms are fairly simple to develop and they
are suitable for parallel processing.

In a genetic algorithm the parameters of the model to be opti-
mized are encoded into a finite length string, called a chromo-
some. The fitness of a chromosome determines its ability to
survive and reproduce offspring. The genetic algorithm creates
an initial population of feasible solutions, and then recombines
them in a such way to guide the search to only the most promis-
ing areas of the state space. The transition rules that produce
one population from another are called genetic recombination
operators. These include Reproduction, Crossover and Muta-
tion. Crossover provides new points in the solution space to
investigate. Mutation, which occurs rarely, guarantees the entire
search space has the opportunity to be searched, given enough
ume.

Initial population size, evaluation function, crossover method,
and mutation rate are parameters which have a great impact on
convergence rate as well as the quality of the solution. Larger
initial populations help avoid local minima but may make
convergence slower. The evaluation function is extremely
important for the rate of convergence. This is studied at great
length in this paper. If there is little difference between worst
case and optimal chromosomes, there will be very little conver-
gence, if any. Larger differences will lead to rapid convergence.
Several researchers have investigated the benefits of solving
combinatorial optimization problems using genetic algorithms
[2,6,7,8,20,21,25,26]. There are several genetic algorithm
packages that have been made available to researchers over the
past two years or so. One such package is GENITOR, described
by Whitney and Kauth [27], which we have installed and modi-
fied for our three dimensional Bin Packing problem.

To apply genetic algorithms to the three dimensional packing
problem, one must define the encoding of the chromosome, the
evaluation function, and the recombination operator. The most
natural encoding is to use a string of integers which form an
index into the set of packages. The first package is denoted "1",
the second "2", and so on. A random reordering of the string
represents a random permutation of the packages. The evalua-
tion function returns the height obtained by applying a three
dimensional next fit or first fit packing algorithm. The smaller
the height, the better the packing.

The recombination operator must produce a permutation of the
packages using partial orderings contained in the two parents.
The resulting chromosome must include all of the packages with



no duplicates. Fortunately, there are several general purpose
crossover functions which meet the requirement. The crossover
functions used in our three dimensional packing algorithm
include Order2, Cycle, and partially mapped crossover (PMX).
These are described by Whitney and Starkweather [28]. In
addition, we have developed a fourth technique which randomly
selects one of these three methods at each recombination. This
method is called Randl. Provided a positive mutation rate has
been specified, mutation will periodically occur during recom-
bination. Mutation swaps a random pair of packages and rotates
them about a randomly chosen axis. Mutation is adaptive, that
is, the mutation rate increases as the parent chromosomes
become more alike.

RESULTS AND CONCLUSIONS

The three dimensional packing algorithm was tested with and
without the genetic algorithm. A base set of five data sets was
used for comparison. These include:

(1) Random 50, a set of 50 packages with the values for
each dimension randomly chosen in the range from 1 to one
half the bin size in each dimension.

(2) Random 500, a set of 500 packages with random sizes
generated in the same manner as Random 50.

(3) Contrived 320. Figure 1 shows 32 packages of unit
height that can be optimally packed. Contrived 320 consists
of 10 repetitions of each of the packages shown in Figure 1.
The data set is initially placed in no special order. The
benefit of this data set is that a 100% fill is possible which
may not be true for the random cases.

(4) Contrived 99 is constructed using the packages shown in
Figure 2. Figures 2(a) and 2(b) show optimal packings of
five and six packages, respectively. The five packages in
Figure 2(a) are repeated with heights of one, two and three,
yielding a set of 15 packages. The six packages in Figure
2(b) are repeated with heights of one, two, and three, yield-
ing a set of 18 packages. These 33 packages are repeated
three times for a total of 99 packages. The Contrived 99
data set is a random ordering of these packages.

(5) Level 75 is constructed using the packages shown in
Figure 3. Figures 3(a) and 3(b) show level oriented optimal
packings of 15 and 10 packages, respectively. The 15
packages in Figure 3(a) are repeated with heights of one,
two and three, yielding a set of 45 packages. The 10 pack-
ages in Figure 3(b) are repeated with heights of one, two,
and three, yielding a set of 30 packages. The Level 75 data
set is a random ordering of these packages.

The optimal packing for Random 50 and Random 500 is not
known, thus the optimal fill may not be 100%. However, the
optimal packing for Contrived 99, Contrived 320 and Level 75
are 36, 10, and 12 respectively.

The results of the three dimensional packing algorithm without
the genetic algorithm are summarized in Table I. The next fit
algorithm produced packings of 34.7% and 30.6% fill for the
random data sets and between 48% and 50% fill for the con-
trived data sets. First fit produced 36% fill for the random data
sets and from approximately 41% to 53% fill for the contrived
data sets. Surprisingly, the next fit and first fit techniques had
fairly equal packing efficiencies. Most likely the ability to
expand levels to make packages fit reduced the benefits of first
fit.

The results of the genetic algorithm for three dimensional pack-
ing are summarized in Table II. Both next fit and first fit were
used as the evaluation function. For each evaluation function,
four different crossover methods were tested. The GENITOR
genetic algorithm system adapted for bin packing was used. In
all cases, the pool size was 200, the bias was 1.6 and the muta-
tion rate was 0.2. The number of recombinations was 100,000
for all cases except the 320 and 500 package sets, which were
run for only 50,000 iterations due to their time requirement.

Running times are not included in Table II, however Order2 was
the fastest algorithm. In the Random 50 case using next fit,
Order?2 took approximately 4.4 minutes to complete while the
others took between 6.3 and 7.4 minutes to complete. In the
Random 500 case using next fit, Order2 took 13 CPU minutes to
complete, while Cycle, PMX, and Randl all took between 1.5
and 2.5 hours of CPU time. The use of first fit as an evaluation
function increased these times proportionally.

Results shown in Table II indicate that the PMX crossover
operator generally had the best packing height. This was inde-
pendent of the data set tested and independent of the next fit or
first fit evaluation functions. However, PMX generally took the
most running time. Order2, however, also yielded good packing
heights. The significance of this crossover function is its quick
running time combined with good results. It often out per-
formed Cycle in both time and packing height. This is illustrat-
ed in Figure 4 which plots the relative convergence rates of
Order2, Cycle, and PMX for the Random 500 data set. Notice
in all three cases the convergence improved rapidly at first and
then tapered off with additional recombinations. This is typical
of genetic algorithms. In Figure 5, the diversity of the gene pool
is illustrated for the Cycle crossover, next fit evaluation function
using the Random 500 data set. The best, median, and worst
fitness values at each recombination are plotted. Notice the
initial random population has a rather wide range. This tightens



up rapidly, until the difference is not noticeable. This is typical
in all of the cases we tested.

Comparing results from Table I and to Table II, the genetic
algorithm generated better packings for all data sets tested.
The best genetic algorithm was able to produce a 54.9% fill for
the random 50 case compared to 36% fill without using a GA.
The best GA produced a 40.6% fill compared to 36.1% fill in
the random 500 case. In the Contrived 99, Contrived 320, and
Level 75 data sets the best GAs were respectively, 70.6%,
58.8%, and 66.7% fill compared respectively to 50%, 52.6% and
50% without using a GA. In the best case, this represents a
difference of approximately 20% compared to packing without
the genetic algorithm.

The effect of preprocessing on next fit and first fit is shown in
Table III and Table IV, respectively. Compare the "Presorted
by" columns in Table III and the Table I Next Fit data. For each
data set listed in the tables, the best case presorting improved
the packing utilization from 34.7 to 41.2%, 30.6 to 50.4%, 50 to
58.1%, 47.6 to 71.4%, and 50 to 60%, respectively. That is, a
simple presort of the packages by a particular dimension im-
proved next fit’s packing efficiency anywhere from 33-50% in
the cases tested.

Table III shows the results of the data sets after being rotated so
that height > length > width. The packages are then presorted
by a particular dimension. Compare the "Rotated and Presort-
ed" columns in Table III and the Table I Next Fit data. For each
data set listed in the tables, rotating, then presorting in a particu-
lar dimension in the best case improved the packing utilization
from 34.7 to 56.9%, 30.6 to 66%, 50 to 60, 47.6 to 71.4%, and
50 to 76.6%, respectively. That is, a rotation and simple presort
of the packages by a particular dimension improved next fit’s
packing efficient anywhere for to 20-64% in the cases tested.
The best packings were obtained by presorting by decreasing
height, with one exception. The one exception had slightly
better results when presorted by decreasing length. Rotation
then presorting by decreasing height yielded the best packings in
all cases.

In a similar manner the effects of preprocessing on First Fit are
shown in Table IV. Compare the "Presorted by" columns in
Table IV and the Table I First Fit data. For each data set listed
in the tables, the best case presorting improved the packing
utilization from 36.0 to 46.5%, 36.1 to 57.3%, 40.9 to 51.4%,
52.6 to 62.5%, and 44.4 to 54.5%, respectively. That is, a
simple presort of the packages by a particular dimension also
improves first fit’s packing efficient in the cases tested.

Table IV shows the results of the data sets after being rotated so
that height > length > width. The packages are then presorted
by a particular dimension. Compare the "Rotated and Presort-

ed" columns in Table IV and the Table I First Fit data. For each
data set listed in the tables, rotating, then presorting in a particu-
lar dimension in the best case improved the packing utilization
from 36.0 to 53.4%, 36.1 to 62.8%, 40.9 to 70.6%, 52.6 to
76.9%, and 44.4 to 66.7%, respectively. That is, a rotation and
simple presort of the packages by a particular dimension also
improves first fit's packing efficient.

Clearly, from Tables III and IV it is best to rotate and presort by
height regardless if you use next fit or first fit. Furthermore,
from results in Table II we note the genetic algorithm did not
perform as well as the rotation and presorting by height using
either first fit or next fit. This is because the genetic algorithm
begins with a random population drawn from a large domain.
Higher packing efficiencies can be obtained by seeding the ini-
tial population. For example, the packages are rotated then
presorted by decreasing height. The resulting list (one chromo-
some) is placed in the initial pool. The results are summarized
in Table V. Notice in every single case the seeded GA yielded
the best performance.

Figure 6 illustrates the effects of a seeded genetic algorithm
verses an unseeded GA. Figure 7 is a "blow up" of the seeded
graph from Figure 6. The unseeded genetic algorithm provides
a larger relative improvement over the seeded genetic algorithm.
The seeded algorithm starts off at a better approximation and
has more work to improve the packing. However, as Figure 7
illustrates, this improvement is not negligible. Figure 7 also
emphasizes how the algorithm converges to a local minima,
stagnating at that point for a while until the packing is suddenly
improved.

In Summary, the seeded GA algorithm using Next Fit and PMX
produced the best overall results for the data sets tested. The
seeded GA using Next Fit and Order2 provided the best results
considering both rapid execution time and packing efficiently.

FUTURE RESEARCH AND RELATED PROBLEMS

The desire to solve large problems naturally leads to the use of
parallel techniques. Fenrich et al. [11] and Lin et al. [22] dis-
cuss some recent work in developing parallel algorithms on a
hypercube computer for two dimensional bin packing. Each
processor uses a serial algorithm to minimize the packing height
of a single, open-ended, two dimensional bin. Some packages
may be left out of the packing if they fail to cover a percentage
of the width of the bin. When the processors are finished, the
packings are recursively combined. Any leftover packages are
combined and added to the packing. Fenrich et al. report very
good results, as well as recommendations on which heuristics
give the best performance. Our next project is the implementa-
tion of a parallel genetic algorithm using HYPERGEN [17] for
three dimensional bin packing and related problems.



The Routing Problem is closely related to the packing problem.
In real world situations, blind bin packing is not enough. Itis
desirable that packages with adjacent or equal destinations be
packed in the same bin. For example, all packages bound for
the same city should be put on the same plane. Given multiple
packages, from multiple sources, going to multiple destinations,
one must also ensure the package arrives at its destination using
the shortest and least expensive route. Thus the problem
becomes a combination of bin packing and the traveling sales-
man problem. A thorough treatment of this topic is described
by Christofides et al. [4], and Lawler et al. [18].

The vehicle routing problem consists of a set of vehicles with
time windows and capacity limits. All customers are serviced
from a central location. The problem is to minimize the number
of vehicles required to deliver all packages within time con-
straints and vehicle weight constraints. The routing requirement
adds an additional constraint to the bin packing problem. Given
a package, it can only be placed in the subset of bins which will
eventually arrive at the destination. Ideally, it should be placed
in the bin which will arrive at the destination in the least time
and with the least cost. As in a network flow problem, the bin
should be as fully packed as possible for the entire route. At
each stop, packages will be added and removed. Packages may
be removed from one bin at an intermediate stop and placed on
another bin to reach their destination.
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Table I: Three Dimensional Packing without Genetic Algorithm

Next Fit | First Fit
Type #Pkgs | Height | Fill | Height | Fill
Random 50 271 4.7% 261  36.0%
Random 500 2879 306 2443 36.1
Contrived 99 12 50.0 88 409
Contrived | 320 21 476 19 526
Level 75 24 50.0 27 444

Table II: Three Dimensional Packing with Genetic Algorithm

Crossover Next Fit | First Fit
Tvpe | #Pkg | Method | Height | Fill | Height | Fill
Random 50 Order2 180 522% 206 45.6%
Cycle 207 454 206 456
PMX 171 549 192 48.9
Randl 189 497 191 49.2
Random 500 Order2 2253 39.1% 2171 40.5%
Cycie 2273 38.7 2126 39.8
PMX 2134 41.3 2194 37.4
Randl 2167 40.6 2143 40.3
Conrrived 99 Order2 51 70.6% 70 51.4%
Cycle 52 692 68 529
PMX 52 692 64 56.2
Randl 53 7.9 T2 50.0
Contrived 320 Order2 18 55.6% 18 55.6%
Cycle 18 55.6 18 55.6
PMX 18 55.6 17 58.8
Randl 19 52.6 17 58.8
| Level 75 QOrder2 20 60.0% 22 54.5%
Cycle 20 600 23 522
PMX 18 66.7 22 545
Randl 21 ST 21 571

Table III: Effect of Preprocessing on Next Fit (without Genetic Algorithm)

| Presorted by Rotated and Presorted by

Tvpe #Pkgs | Width | Length | Height | Width | Length | Height

Random 50 | 332% 412% 40.1% | 360% 489% S56.9%
Random s00 | 357 452 504 | 434 502 66.0
Conrrived 99 | 514 57.1 58.1 57.1 58.1 60.0
Conmived | 320 | 66.7 71.4 714 714 71.4 714
Level 75 | 444 60.0 60.0 50.0 66.7 70.6




Table IV: Effect of Preprocessing on First Fit (without Genetic Algorithm)

Presorted by | Rotated & Presorted by
Type # Pkgs | Width | Length | Height | Width | Length | Height
Random 50 | 33.8% 41.6% 465% | 387% 416% 534%
Random 500 | 37.4 42,5 57.3 42,1 50.4 62.8
Conrived 99 | 45.0 514 493 61.0 632 70.6
Conmived | 320 | 588 62.5 62.5 76.9 76.9 769
Level 75 | 480 54.5 54.5 50.0 60.0 66.7

Table V: Genetic Algorithm Seeded with Best Preprocessed Packing

Crossover Next Fit First Fit
Type | #Pke | Method | Height | Fill | Height | Fill
Random 50 Order2 150 62.6% 168  55.9%
Cycle 144 652 154 610
PMX 152 61.8 168 559
Randl 146 643 166  56.6
Random 500 Order2 1311 672% 1380 63.8%
Cycle 1312 67.1 1379 639
PMX 1317 666 1385 636
Rand! 1316  66.9 1380 638
Contrived 99 Order2 51 70.6% 48 75.0%
Cycle 53 679 47 166
PMX 52 692 47 766
Randl 53 679 48 750
Contrived 320 Order2 14 71.4% 13 76.9%
Cycle 14 714 13 769
PMX 13 76.9 13 76.9
Randl 13 769 13 769
Level 75 Order2 16 75.0% 17 70.6%
Cycle 16 750 17 70.6
PMX 16 750 17 706
Rand1 16 75.0 17 70.6

Figure 1: Layout for Contrived 320 Data Set

(a) (b)
Figure 2: Layout for Contrived 99 Data Set

(a) (b)
Figure 3: Layout for Level 75 Data Set
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