Proceedings of the 7th Oklahoma Symposium on Artificial Intelligence,
November 18-19, 1993, Stillwater, OK, pp. 215-225.

Manipulating Subpopulations in Genetic Algorithms
for Solving the k-way Graph Partitioning Problem*

D. Ansa Sekharan
Roger L. Wainwright

Department of Mathematical and Computer Sciences
The University of Tulsa
600 South College Avenue
Tulsa, Oklahoma 74104-3189
sekhar@euler.mcs.utulsa.edu
rogerw(@penguin.mcs.utulsa.edu

ABSTRACT

This paper explores the partitioning of the population pool
in genetic algorithms (GA) into separate subpopulations of
feasible and infeasible solutions, and the interaction on a
regular basis of crossover operations among and within the
subpopulations. The Graph Bisection Problem and the k-
way Graph Partitioning Problems were chosen as represen-
tative optimization problems to apply our subpopulation
strategies. We designed several algorithms for manipulat-
ing the two population pools and compared this against the
traditional GA, The traditional GA uses a single popula-
tion pool where infeasible solutions are generally consid-
ered infrequently or ignored. We also developed several
new crossover operators to be used while manipulating
feasible and infeasible solutions. All of our algorithms
significantly and consistently outperformed the traditional
GA in all of the test problems. This illustrates the impor-
tance of infeasible solutions as a source of good genetic
material, Furthermore, results show that two of our new
crossover operators consistently out performed the others,

1. INTRODUCTION
The Graph Bisectioning problem (GBP) partitions the

vertices of an undirected weighted graph G = (V,E), (IVlis

" Research supported by OCAST Grants AR2-004 and
ARO-038 and Sun Microsystems Inc.

even) into two sets of equal size such that the weight of the
edges between them is minimized. Such a partition is
sometimes called a min-cut or a minimum bisection. Graph
partitioning has important applications to VLSI such as
floor planning, and module placement and routing [2,16].
Other applications include memory segmentation to mini-
mize paging [14], and processor allocation.

Since the graph bisectioning problem has been shown to be
NP-complete [11], there have been several heuristic algo-
rithms developed to yield good approximations for the
GBP problem. The Kernighan-Lin algorithm [14] is
recognized as the classic approach to this problem. Recent-
ly, Saab and Rao [19] developed a series of algorithms for
the GBP problem. Their adaptive heuristic technique
outperformed the Kernighan-Lin algorithm in 70% of the
cases they tested, while executing three times faster. Both
the Kernighan-Lin and Saab-Rao techniques are greedy
algorithms. That is, they begin with an initial solution,
then a neighborhood of the current partition is searched for
a new partition, If the cost is reduced, the current solution
is replaced by the new solution. This process is repeated
until no more improvement can be found. One danger of
greedy algorithms is the possibility of falling into a local
minimum. Usually it is difficult to get out of the local
minimum, and furthermore, it may be far from the optimal
solution.

Zhao et al. [24] developed a simulated annealing (SA)
technique for the graph bisectioning problem. They theo-

rized that since the SA technique generally avoids local
minimums, perhaps the SA approach will yield superior
solutions to the Kernighan-Lin and Saab-Rao algorithms.
Their results suggest this. They found their SA graph
bisectioning algorithm obtained better results in nearly all
of the cases they tested. Their test cases ranged from 50 to
500 nodes. Furthermore, the CPU times for their SA algo-
rithms were less than the other two algorithms for 100
nodes or more.

The k-way graph partitioning problem (k-GPP) is also a
combinatorial problem which has applications in the VLSI
design of electrical circuits, mapping and many other areas
of computer science. The k-way graph partitioning prob-
lem partitions the vertices of an undirected weighted graph
G = (V,E), into k disjoint subsets of vertices ViV, such
that the sum of the weights of the edges between the sub-
sets is minimal, and the sizes of the subsets are as equal as
possible. The subsets are called partitions, and the set of
edges that must be removed to form the partitions is called
acuf.

2. GENETIC ALGORITHMS

The genetic algorithm (GA), first described by Holland
[12] in the early 1970’s, is a robust search and optimization
technique based on the principles of natural genetics and
survival of the fittest. Genetic algorithms use the laws of
natural selection and genetics to guide a non-deterministic
search. In genetics, a set of chromosomes contain all of the
genes (information) which form the "blueprint” for a spe-
cies. In a genetic algorithm, a chromosome is a string
which encodes a possible solution for a problem. The
traditional genetic algorithm begins by creating an initial
population of feasible solutions, and then recombines
feasible solutions in such a way to guide the search to only
the most promising areas of the state space.

Genetic algorithms search through the solution space by
emulating biological selection and reproduction. Each new
generation is created by a biased reproduction. That is, the
more "fit" members of the population have a better chance
of reproduction. The parameters of the model to be opti-
mized are encoded into a finite length string, usually a
string of bits. Each parameter is represented by a portion
of the string (chromosome). Each chromosome is given a
measure of "fitness"” by the fitness function, which is

sometimes called the objective or evaluation function.
The fitness function drives the population toward better
solutions and is the most important part of the algorithm.
The fitness function is what distinguishes one problem
from another [15]. The fitness of a chromosome deter-
mines its ability to survive and reproduce offspring in the
next generation. Since a fixed size population is main-
tained, the "least fit" or weakest chromosomes of the
population are displaced by more fit chromosomes. Hence
the population of chromosomes tends to mature to the
optimal or near-optimal solutions with each new genera-
tion.

Genetic Algorithms are applicable to a wide variety of
problems and have been very successful in obtaining near-
optimal solutions to many different combinatorial optimi-
zation problems [1,3.4,6,7,8,17,23]. Genetic algorithm
packages for a single processor have been available for
several years. A steady-state GA such as GENITOR [22]
and a generational GA such as GENESIS [10], and LibGA
[5] which offers the ability to use both a generational or a
steady-state approach are three example packages that are
readily available. Davis, Goldberg and Rawling, provide
an excellent in depth study of genetic algorithms [6,7,9,18].

3. GA APPLIED TO THE GBP PROBLEM

Consider the GBP problem with » nodes, where » is even.
A Chromosome defining a possible partitioning is depicted
as a bit string of length n. The ith bit of the chromosome
corresponds to the ith node in the graph. A one bit means
the associated node is included in one partition and a zero
bit means the node is included in the other partition. There
are obviously 2" possible chromosomes. However, a feasi-
ble solution is defined as any chromosome where the
number of one bits equals the number of zero bits, other-
wise the partitioning is unequal in the number of nodes,
hence illegal, The optimal solution is a feasible solution
with the minimum cut.

In general, the traditional genetic algorithm implementation
uses a single population pool. The population can contain
both feasible and infeasible solutions. In some GA’s only
feasible solutions are considered; infeasible solutions are
discarded and not placed in the pool. In some GAs infeasi-
ble solutions are given an extremely poor or non-existent
fitness value, hence they rarely, if ever, participate in the

genetic recombination operations. The traditional single
pool GA could be made to manipulate infeasible solutions,
however, if the fitness function were properly adjusted.
However, as generations continue and more and more
feasible solutions are generated, the infeasible solutions are
considered more infrequently or not at all.

In our previous paper involving the Set Covering Problem
[20], we studied the effect of maintaining separate popula-
tion pools of feasible and infeasible solutions and periodi-
cally involving infeasible solutions in crossover operations
regardless of their fitness value. We determined that infea-
sible solutions often contain an excellent source of genetic
material that should not be overlooked. There are several
reasons one might want to consider infeasible solutions in
the population pool. First, it may be extremely difficult to

generate a feasible solution, perhaps as difficult as generat- -

ing the optimal solution. Secondly, involving infeasible
solutions in the search insures diversity in the search space
and allows for a more robust algorithm. Finally, if the
solution space is disjoint or non-convex, a more direct path
to an optimal solution might be to traverse through a sec-
tion of the search space containing infeasible solutions
[20]. We developed nine different algorithms involving
feasible and infeasible solutions and compared these algo-
rithms against the traditional GA. Among the nine algo-
rithms we tested, no one algorithm was significantly better
than any of the others. However, all nine algorithms out-
performed the traditional GA in all of our test cases solving
the set covering problem. We concluded if the problem
one is solving generates infeasible solutions, then it is
important to include the infeasible solutions in the cross-
over operations on some regular basis. In this paper we
apply this strategy to the GBP and the k-GPP problems.

In our GA model, we represent a graph bisection of n nodes
as a chromosome of »n bits. Each bit is associated with a
node. The nodes represented by zero bits form one parti-
tion, and the nodes represented by one bits form the other.
Obviously, a feasible solution is represented by a chromo-
some with an equal number of one and zero bits. In our
GA model, feasible and infeasible solutions are maintained
in separate subpopulation pools of equal size of ps/2. The
total population of size ps at each generation remains
constant. We used GENITOR [22] which was modified for
our particular application. GENITOR is a steady-state GA,
generating one child at a time while removing the worst

chromosome in the population,

The initial population is constructed by randomly generat-
ing each bit in each chromosome. Each resulting chromo-
some representing either a feasible or infeasible solution is
then placed into the proper pool until one pool has been
filled. Thus, the other pool may not be completely filled
initially, but is allowed to grow up to size ps/2 as future
children are generated. The evaluation function for a
chromosome in the feasible solution pool is the cost of the
cut. We define off as Ino. 1’s-no. 0’s 1 /2. Thatis, if n =
100 and a chromosome has 46 1 bits then off = 4. The
evaluation function for infeasible solutions is off * const +
cut, where const is some constant larger than the sum of the
weights of all of the edges in the graph, and cut is the cost
of the partitioning. In this way the infeasible solutions are
ranked first by off then secondly by the cur of the partition.
For feasible solutions, off is zero. Hence feasible solutions
are ranked by the cost of the cut, as expected. In all cases
the mutation operation consists of exchanging two random-
ly selected bits in a string.

We define an X-crossover as one that involves two chro-
mosomes from the feasible pool. A Y-crossover involves
one chromosome from the feasible pool and one from the
infeasible pool. A Z-crossover involves two chromosomes
from the infeasible pool. In all cases the resulting feasible
solutions are placed into the feasible pool and the resulting
infeasible solutions are placed into the infeasible pool [20].

We have designed a class of algorithms for manipulating
the feasible and infeasible population pools. An algorithm
is define in the form of a triple (x,y,z), where x, y, z repre-
sents the percentage of time the X, ¥, and Z-crossovers are
performed, respectively. Hence algorithm (95, 4, 1), for
example, means that for any given crossover operator, there
is a 95% chance that two chromosomes from the feasible
pool will be selected, 4% chance one chromosome from
each of the pools will be selected, and 1% chance that two
chromosomes from the infeasible pool will be selected.

We have also developed a class of oscillation algorithms
that varies x and y percentages with each new trial. As an
example, oscillation algorithm (OSC) holds z constant at
1% and oscillates x from 75 to 98, then back down to 75,
and so forth in increments and decrements of 1. The y
percent is such that x+y is always 99. The x, y, z values for

(OSC) were selected after testing numerous alternatives.

We also compared the difference in executing a problem
using a bias selection from the infeasible pool, and a
random selection. In our previous work [20] we noted
there was no distinguishable difference whether chromo-
somes were selected for the infeasible solution randomly or
using a selection bias. In this research, we tested the effect
of random and bias selections from the infeasible pool on
the GBP problem. In our notation, algorithm (95, 4, I) -
Bias means the chromosomes were selected for the infeasi-
ble solution using a selection bias, and algorithm (95, 4, 1)
- Random means the chromosomes were selected for the
infeasible solution randomly. A similar notation is used for
the (OSC) algorithm.

Tables I through III show the results of testing various
algorithms on a GBP problem of n = 50 nodes. We tested
the following algorithms: (95, 4, 1) - Random, (OSC) -
Random, (95, 4, 1) - Bias and (OSC) - Bias. We compared
these results with the traditional single pool GA (Tradl).
The fitness function described in the previous section was
used in all of the algorithms, We also tested the Saab-Rao
algorithm. The Saab-Rao results are given in the title of
each Table. All edge weights were randomly selected
between one and four. The only difference between the
GBP problems used in Tables I through I1I is the degree
probability. Table I gives results of a 50 node GBP with
degree probability of 0.2. Table II and Table III represent
problems of size 50 with degree probabilities 0.3 and 0.4
respectively. The degree probability is the probability that
any two nodes in the graph are connected. For a given
degree probability, the specific edge connectivity was
determined randomly,

In each GBP problem we used the uniform crossover
operator. Results of the uniform crossover are shown at the
top of each table. The population size when the uniform
crossover was used was 400. We also tested a multi-point
crossover operator, for various values of m ranging from
the standard single and double point crossover operators to
5, 10, 15, ...40 point crossover operators. We also tested
two random point crossover operators, one randomly
ranging from 1..50 and the other randomly ranging from
15..35. The population size for each of the m-point cross-
over examples was 600.

4. RESULTS FOR THE GBP PROBLEM

Results from Tables I through Table III are consistent.
Clearly the Saab-Rao algorithm is an excellent heuristic
algorithm for the GBP problem yielding excellent results.
Our four genetic algorithms as a group performed compara-
tively well to the Saab-Rao algorithm yielding the same
results in many instances, and a superior result in one case.
Results indicate there was no one crossover technique that
consistently performed better than any of the others. Nor
was there any significant indication that random selection
was any betler or worse than bias selection. One over-
whelming result, however, was that our four GA algo-
rithms, which took the infeasible solutions into account,
consistently performed better than the traditional genetic
algorithm. In only two instances out of 39 cases in Tables I
through III did the traditional GA match the best perform-
ance of the other four genetic algorithms. Furthermore,
there was no instance in which the traditional GA was
superior to any of the other four genetic algorithms, which
made use of infeasible solutions.

5. GA APPLIED TO THE k-GPP PROBLEM

The main thrust of this paper is the k-GPP problem. The k-
GPP problem has a much larger state space than the GBP
problem for the same number of nodes. Furthermore, there
is no special heuristic for the k-GPP problem like the Saab-
Rao algorithm is for the GBP problem. Jones and Beltra-
mo [13] developed a genetic algorithm for solving parti-
tioning problems., Their work centered on techniques for
partitioning a sequence of numbers into & piles of numbers
of equal sum. This is sometimes called the "equal piles
problem”, This problem is similar to the k-GPP problem
and may be of interest to the reader.

We adopted the chromosome encoding scheme for the k-
GPP problem suggested by Von Laszewski [21]. A k-GPP
problem with » nodes (# is a multiple of k) is represented
by a chromosome of length n, where each gene represents a
specific node. Each gene of the chromosome may take on
any integer value from 1..k. For example, n = 12 and k =3,
a possible chromosome representation could be (133212
321312)orperhaps (13323232231 2). Notice the
first chromosome has an equal number of one’s, two’s and
three’s, representing an equal partitioning of the 12 nodes
into three groups. This represents a feasible solution. The

second chromosome does not depict an equal partitioning
of the 12 nodes into three groups, thus representing an
infeasible solution. Von Laszewski’s genetic algorithm for
the k-way graph partitioning problem does not take into
account infeasible solutions.

In the k-GPP problem, the evaluation function for a chro-
mosome in the feasible solution pool is the cost of the cut,
Jjust like the GBP problem. We define off as the minimum
number of genes that must be altered to convert an infeasi-
ble solution into a feasible solution. For example, the
value for off for the second chromosome in the above
example is two. The evaluation function for infeasible
solutions is off * const + cut, where const is some constant
larger than the sum of the weights of all of the edges in the
graph, and cut is the cost of the partitioning. In this way
the infeasible solutions are ranked first by off then secondly
by the cut of their partition. For feasible solutions, off is
zero. Hence feasible solutions are ranked by the cost of the
cut, as expected. In all cases the mutation operation con-
sists of exchanging two randomly selected integers in a
string. We used several different crossover operators for
our GA implementation of the k-GPP problem. These
include Structural, Modified Uniform, Modified Asexual,
and Asexual Uniform. All of the crossover operators are
described below.

Von Laszewski [21] suggests an intelligent structural
crossover operator for the k-way graph partitioning prob-
lem. This operator copies whole partitions into an off-
spring to avoid destroying valuable information that has
already been gained. We call this the Structural crossover
operator. Consider the following example for » = 16, and £
=4

Parent1: (1333134422442211)

Parent2: (1133123312444224)

One of the partitions is randomly selected from Parent 1,
for example partition 2. Partition 2 from Parent 1 is over-
laid on top of Parent 2. The values involved are shown in
bold. This produces

Child: (1133123322442224),

which is infeasible. This is corrected by noting 1 and 4

values were destroyed in Parent 2, and now the Child has
two extra 2 values. Hence two 2 values (other than the
ones copied from Parent 1) are randomly selected and
altered to a 1 and a 4 producing the final Child:

Child: (1133113322442244),

which is feasible. The Modified Uniform crossover is an
extension of the uniform crossover operator. The first child
is produced as a result of the uniform crossover, and placed
into the feasible or infeasible pool whichever is appropri-
ate. A second child is also produced using the uniform
crossover operator. However, if this is infeasible it is fixed
so that it becomes feasible and then placed into the feasible
pool. This guarantees at least one feasible solution from
the crossover operator, which otherwise might be very rare.
Note our experiments using the uniform crossover operator
(unmodified) produced extremely poor results, and was not
considered.

The traditional asexual crossover operator randomly selects
two locations within a chromosome and exchanges values
producing one child. Our Modified Asexual is carried out
for the X, Y and Z crossovers and produces one or two
children. The first child is generated using the traditional
asexual operator. This child is placed into the proper pool.
If, however the first child was an infeasible solution, then a
second child is generated by "fixing" the first child to make
it feasible. This ensures propagation of infeasible solutions
and the generation of new feasible solutions.

We define the Asexual Uniform crossover operator as
follows. For an X-Crossover the traditional asexual cross-
over operator is used. However, for Y-Crossover and Z-
Crossover operations, the traditional uniform crossover
operator is used. In all cases, the child is placed into the
proper pool. If, however the child was an infeasible solu-
tion, then a second child is generated by "fixing" the first
child to make it feasible. In this regard, it is similar to the
Modified Asexual crossover operator.

5. RESULTS OF THE k-GPP PROBLEM

We generated several datasets to test our GA implementa-
tion of the k-GPP problem. Datasets were randomly gener-
ated for n = 60 and 120, for £ = 3..5, and for n = 240, for k
=3 and 4. Each edge was given unit weight, and the

degree probability for each node was randomly generated
in the range 2..n/2. We tested the following algorithms:
Traditional GA, (95,4.1) - Random and OSC - Random.
We ran each of these three algorithms using each of our
four crossover techniques, Structural, Modified Uniform,
Modified Asexual, and Asexual Uniform for each of the
datasets.

Figure 1 through Figure 3 shows the results of the 3-way
graph partitioning genetic algorithms for n = 60, 120 and
240, respectively. The Asexual Uniform crossover is de-
fined only for infeasible solutions, thus the traditional GA
was not run using this crossover. Notice the overall poor
performance in all cases when the Structural crossover
operator was used. In general the (95,4,1) - Random and
OSC - Random algorithms, which make use of the infeasi-

ble pool, performed better than the traditional GA algo- -

rithm. Overall, the best algorithm was OSC - Random
using either the Modified Asexual, or Asexual Uniform
Crossover operator.

Figure 4 through Figure 6 shows the results of the 4-way
graph partitioning genetic algorithms for n = 60, 120 and
240, respectively. Notice again the overall poor perform-
ance in all cases when the Structural crossover operator
was used. In general the traditional GA performed better
when the Structural and Modified Uniform crossover
operators were used. However, the overall best algorithms
appeared to be (95,4,1) Random and OSC - Random using
either the Modified Asexual, or Asexual Uniform crossover
operator.

Figure 7 and Figure 8 show the results of the 5-way graph
partitioning genetic algorithms for n = 60 and 120, respec-
tively. Notice again the overall poor performance in these
two cases when the Structural crossover operator was
used. In general the traditional GA performed better when
the Structural and Modified Uniform crossover operators
were used. This was not the best results, however. Again,
the overall best algorithms appeared to be (95 4,/) Random
and OSC - Random using either the Modified Asexual, or
Asexual Uniform crossover operator.

6. CONCLUSIONS

The Saab-Rao algorithm is an excellent heuristic algorithm
for the GBP problem. The four genetic algorithms we

developed that used both feasible and infeasible pools
compared reasonably well to the Saab-Rao algorithm. The
performance of the traditional GA, however, for the GBP
was the worse of all the algorithms we tested. The overall
best algorithms for the k-way graph partitioning problem
are the (95,4,1) Random and OSC - Random that we de-
veloped using either of our Modified Asexual, or Asexual
Uniform crossover operators. The Structural and Modified
Uniform crossover operators in general are not effective for
this problem. The performance of the traditional GA was
hindered by not taking advantage of an infeasible pool.
This research strongly suggests if a problem generates
infeasible solutions, then it may be extremely important to
the success of the algorithm to include infeasible solutions
in the crossover operations on some regular basis.

ACKNOWLEDGEMENTS

This research has been partially supported by OCAST
Grants AR2-004 and ARO-038. The authors wish to
acknowledge the support of Sun Microsystems Inc. The
authors also wish to thank K. Thulasiraman [24] for supply-
ing the authors with code for the Saab-Rao algorithms.

REFERENCES

[11 J.L. Blanton and R.L. Wainwright, "Multiple Vehicle
Routing with Time and Capacity Constraints using Genetic
Algorithms", in S. Forrest, ed., Genetic Algorithms: Pro-
ceedings of the fifth International Conference (GA93),
Morgan Kaufmann, San Mateo, CA.

[2] S.Bhatt and F. Leighton, "A Framework for Solving VLSI
graph Problems”, J. Comput. Syst. Sci., vol. 28, no. 2, pp.
300-343, Apr., 1984,

[3] D.E. Brown, C.L. Huntley and A.R. Spillane, "A Parallel
Genetic Heuristic for the Quadratic Assignment Problem",
Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, 1989,

[4] A.L.Corcoran and R.L. Wainwright, "A Genetic Algorithin
for Packing in Three Dimensions", Proceedings of the 1992
ACM/SIGAPP Symposium on Applied Computing, 1992, pp.
1021-1030, ACM Press.

[5] A.L. Corcoran and R.L. Wainwright, "LibGA: A User-
friendly Workbench for Order-based Genetic Algorithm
Research", Proceedings of the 1993 ACM/SIGAPP Sympo-

(6]

(7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

sium on Applied Computing, pp. 111-118, 1993, ACM
Press.

L. Davis, ed., Genetic Algorithms and Simulated Annealing,
Morgan Kaufmann Publisher, 1987.

L. Davis, ed., Handbook of Genetic Algorithms, Van Nos-
trand Reinhold, 1991.

K.A. De Jong and W.M. Spears, "Using Genetic Algorithms
to Solve NP- Complete Problems", Proceedings of the
Third International Conference on Genetic Algorithms,
June, 1989, pp. 124-132.

D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, 1989.

J. Grefenstette, GENESIS, Navy Center for Applied Re-

search in Artificial Intelligence, Navy research Lab., Wash. -

D.C. 20375-5000.

M.R. Garey and D.S. Johnson, Computers and Intractabili-
ty: A Guide to the Theory of NP-Completeness. Freeman,
New York, 1979.

J.H. Holland "Adaptation in Natural and Artificial
Systems", Ann Arbor: The University of Michigan Press,
1975.

D.R. Jones and M.A. Beltramo, "Solving Partitioning
Problems with Genetic Algorithms", Proceedings of the
Fourth International Conference on Genetic Algorithms,
pp. 442-449, Morgan Kaufmann, 1989.

B.W. Kernighan and S. Lin, "An Efficient Heuristic Proce-
dure for Partitioning graphs", The Bell Technical Journal,
vol. 49, pp. 291-307, Feb., 1970.

L.R. Knight and R.L. Wainwright, "HYPERGEN: A Dis-
tributed Genetic Algorithm on a Hypercube", Proceedings
of the 1992 Scalable High Performance Computing Confer-
ence, SHPCC’ 92, Williamsburg, Va., April 26-29, 1992,

D. La Potin and S. Directer, "Mason: A Global Floorplan-
ning Approach for VLSI Design", IEEE Trans. Computer-
Aided Design, vol. CAD-5, pp. 477-489, Oct., 1986.

P.P. Mutalik, L.R. Knight, J.L. Blanton and R.L. Wain-
wright, "Solving Combinatorial Optimization Problems
Using Parallel Simulated Annealing and Parallel Genetic
Algorithms", Proceedings of the 1992 ACMI/SIGAPP
Symposium on Applied Computing, pp. 1031-1038, 1992,
ACM Press.

(18]

[19]

(20]

[21]

(22]

[24]

G. Rawling, ed., Foundations of Genetic Algorithms,
Morgan Kaufmann Publishers, 1991.

Y.G. Saab and V.B. Rao, "Fast Effective Heuristics for the
Graph Bisectioning Problem", IEEE Transaction on
Computer-Aided Design, vol. 9, no. 1, pp. 91-98, January,
1990.

D.A. Sekharan and R.L. Wainwright, "Manipulating
Subpopulations of Feasible and Infeasible Solutions in
Genetic Algorithms", Proceedings of the 1993
ACMISIGAPP Symposium on Applied Computing, pp. 118-
125, 1993, ACM Press.

G. von Laszewski, "Intelligent Structural Operators for the
k-way Graph Partitioning Problem", Proceedings of the
Fourth International Conference on Genetic Algorithms,
June, 1991, pp. 45-52.

D. Whitley and J. Kauth, GENITOR: A Different Genetic
Algorithm, Proceedings of the Rocky Mountain Conference
on Artificial Intelligence, Denver, Co., 1988, pp. 118-130.

D. Whitley, T. Starkweather, and D. Fuquat, "Scheduling
Problems and Traveling Salesman: The Genetic Edge
Recombination Operator”, Proceedings of the Third Inter-
national Conference on Genetic Algorithms, June, 1989.

Y.C. Zhao, L. Tao, K. Thulasiraman and M.N.S. Swamy,
"An Efficient Simulated Annealing for Graph
Bisectioning", Proceedings of the 1991 IEEEIACM/SIGAPP
Symposium on Applied Computing, pp. 65-68, 1993, IEEE
Press.

Algorithm

(954.1) 0sC (95.4,1) | OSC | Tradl

Random | Random Bias Bias
Uniform 194 172 169 169 200
M-point
1 214 198 224 218 229
2 240 236 227 210 229
5 204 191 199 181 185
10 173 169 200 191 176
15 169 185 176 193 183
20 172 175 196 183 175
25 177 169 192 169 181
30 172 175 169 172 179
35 169 179 176 175 183
40 169 173 205 172 176
RAND [1..50] 180 177 195 194 196
RAND [15..35] 180 186 182 172 178

Table I: GBP Results for 50 Nodes, Deg. Prob. = 0.2,
Uniform Pool Size = 600, M-point Pool Size = 400
Saab_Rao Cost = 169
Algorithm

(954.1) Qsc (95.4,1) | OSC | Tradl

Random | Random Bias Bias
Uniform 297 292 298 297 302
M-point
1 342 351 341 335 335
2 345 343 341 333 347
5 326 327 292 303 297
10 301 317 306 305 316
15 300 311 299 305 302
20 299 299 299 298 308
25 297 296 307 304 309
30 296 299 297 299 308
35 300 309 299 308 306
40 295 297 299 297 299
RAND [1..50] 298 299 310 322 305
RAND [15..35] 298 296 299 295 301

Table II: GBP Results for 50 Nodes, Deg. Prob. = 0.3,

Uniform Pool Size = 600, M-point Pool Size = 400

Saab_Rao Cost = 293

Algorithm

(954.1) 0sC (954.1) | OSC | Tradl

Random | Random Bias Bias
Uniform 426 432 426 426 426
M-point
1 440 447 472 469 490
2 493 479 521 459 483
5 429 429 443 426 447
10 435 442 459 448 450
15 426 434 432 439 435
20 426 426 431 437 431
25 432 435 426 437 431
30 430 428 435 426 444
35 428 433 432 426 | 430
40 426 426 428 436 426
RAND [1..50] 438 426 431 426 437
RAND [15..35] 426 426 435 426 437

Table II: GBP Results for 50 Nodes, Deg. Prob. = 0.4,

Uniform Pool Size = 600, M-point Pool Size = 400

Saab_Rao Cost = 426

COST OF PARTITION

COST OF PARTITION

210
% L
E 200 -
% L
o
6 190 |-
s L
8

180 |-

170 |-

e 28 N] A | ’ Fl
Modified_Uniform Structural Modifled_Asexual Asexual Uniform
CROSSOVER OPERATORS
W Tradiional] (95.4,1)_Random K5 OSC_Random
FIGURE 1: 3WAY GRAPH PARTITION, 60 NODES, POOL SIZE = 100
920 -
900 —
880 -
860 -
840 -
820
800
' <
L _ PP Sl |
Modified_Uniform Structural Modified_Asexual Asexual_Uniform
CROSSOVER OPERATORS
I Tradiional [(95.4,1)_Random [7j OSC_Random
FIGURE 2: 3-WAY GRAPH PARTITION, 120 NODES, POOL SIZE = 200

4100
4000 -
3900
3800
3700 -
3600 -
3500 -
34 LR ———- = -

Modifled_Asexual Asexual_Uniform
CROSSOVER OPERATORS

B Traditional (95.4,1)_Random [} OSC_Random

FIGURE 3 : 3-WAY GRAPH PARTITION, 240 NODES, POOL SIZE = 300

COST OF PARTITION

1

COST OF PARTITION

-

COST OF PARTITION

250 -
240
230
220 -
210 -
200 (-
p el oS 3 1L 2 _BERL
Modified_Unilorm Structural Modified_Asexual Asexual_Uniform
CROSSOVER OPERATORS
M Tradiional £ (95.4,1)_Random [OSC_Random
FIGURE 4 : 4-WAY PARTITION, 60 NODES, POOL SIZE = 200
100 -
050 -
000
950 — e PR S 4 %% 4 J i
Modifled_Uniform Structural Modilied_Asexual Asexual_Uniform
CROSSOVER OPERATORS
I Traditional & (95,4,1)_Random [OSC_Random
FIGURE 5 : 4-WAY PARTITION, 120 NODES, POOL SIZE = 300
4500
4400
4300 -
4200 |-]
]
r s
4100 5
L %
2]
QEEEJ
3 P % 3
b & > T i K é’]
Modilied_Uniform Structural Modified_Asexual Asexual_Uniform

CROSSOVER OPERATORS
I Traditional &J (95.4,1)_Random [} OSC_Random

FIGURE 6 : 4 WAY PARTITION, 240 NODES, POOL SIZE = 400

COST OF PARTITION

270

260 -
250
240 —
b
- §0a%Y
[_ <X ‘ :
200 - i o
. <
<3
5055 X
220 &
% %Y s | |
Modified_Unifo Structural Modified_Asexual Asexual_Uniform
CROSSOVER OPERATORS
M Traditional £X (95.4,1)_ Random [} OSC Random
FIGURE 7 : 5-WAY PARTITION, 60 NODES, POOL SIZE = 50
1200
= = !
o 1150 :
= 5.=
x . .
< i
o i
W 5050
© 1100 - o]
= $e%ed -
3 o]
Q 5050
o -] T
<00 (o
(] R~ |
25%% oM
25 oo i< <]
1050 R RS |
38 Sl
:0“.0.1 : 323223‘ .’q .
PP S 2O TP e
Modified_Uniform Structural Modified_Asexual Asexual_Uniform
CROSSOVER OPERATORS

B Traditional (95.4,1)_Random [} OSC_Random

FIGURE 8 : 5-WAY PARTITION, 120 NODES, POOL SIZE = 75

