Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing

(SAC’93), Indianapolis, IN.,

February 14-16,

1993, pp. 118-125.

MANIPULATING SUBPOPULATIONS OF FEASIBLE AND
INFEASIBLE SOLUTIONS IN GENETIC ALGORITHMS®

D. Ansa Sekharan
Roger L. Wainwright

Department of Mathematical and Computer Sciences
The University of Tulsa

Abstract

This paper explores the partitioning of the population pool
in genetic algorithms into separate subpopulations of feasi-
ble and infeasible solutions, and the interaction on a regular
basis of crossover operations among and within the sub-
popuiations. The set covering problem was chosen as a
representative optimization problem to appiy our subpopu-
lation strategies. We designed a class of nine aigorithms
for manipulating the two population pools and compared
this against the waditional GA. The traditional GA uses a
singlie population pool where infeasible solutions are
generally considered infrequently or ignored. All of our
algorithms significantly and consistently ourperformed the
traditional GA in all of the test problems illustrating the
importance of infeasible solutions as a source of good
genetic material. Furthermore, results show that the
random select consistently outperformed the bias select
from the infeasible pool suggesting all infeasibie soiutions
shouid be considered equal.

Introduction

The class NP of problems denotes the set of all decision
problems solvabie by a non-deterministic polynomial time
algorithm. The class P of problems denotes the set of all
decision problems solvable by a deterministic polynomial
time algorithm. According to Cooke’s Theorem. every
probiem in NP can be transformed into the Boolean satis-
fiability problem (SAT). Only those problems in NP for
which the reverse transformation exists are considered
equally "hard” problems and define the class of NP-
complete problems. The class of NP-complete problems
are, in theory, considered computationaly equivalent. NP-
complete problems have no known deterministic polyno-
mial time algorithms; that is, there is no known solution

" Research partially supported by OCAST Grant ARO-038 and
Sun Microsystems Inc.

Pormission to copy withomt fse all or part of this material is granted provided that
the copies are ot mads or distribmutad for direct commercial advastags, the ACM
copyright notics md the title of the publication and hts dats appesr, and notics i
gven that copyiag is by permissicn of the Amodation for Computing Machinery. To
copy ctherwiss, o to republish, requires a fee aadior specific permissica.

© 1993 ACM 0-89791-558-29300020118__31.50

except to try all combinations [1.14]. These problems are
sometimes referred to as combinatorial optimizatdon prob-
lems.

[t is impossible to optimally solve any of these problems,
except for trivial cases. Finding a solution requires an
organized search through the problem space. An unguided
search is exmremely inefficient. Consequently, research has
focused on approximation techniques which provide effi-
cient. near optimal solutions, Some of these technigues
which are applicable to NP-complete problems inciude
heuristc techniques, simulated annealing, neural nerworks,
and genetic algorithms.

In this paper we consider genetic algorithms as a technique
for solving combinatorial optimization problems. This
paper explores the partioning of the population pool into
subpopuiations of feasible and infeasible solutions. and the
interaction of crossover operations among and within the
subpopulations. This work has not been investigated
before. The set covering problem (SCP) was chosen asa
representative combinatorial optimization problem to appiy
our subpopulation strategies. The SCP problem was
chosen because many practical applications can be ex-
pressed as a SCP problem. These include information
retrieval, graph coloring, various Al applications, VLSI
logic design, operations research, assignment problems,
scheduling problems such as assembly line scheduling and
airline crew scheduling, design of computer systems, polit-
ical districting, circuit simulation, etc. [2].

The Set Covering Problem

The set covering problem has been shown to be NP-com-
plete. In fact, it is one of the "core” NP-complete prob-
lems. Note the vertex covering problem isa special case of
the SCP probiem. The SCP problem is the problem of
finding the minimum number of columns in a Boolean
matrix such that all rows of the Boolean matrix are "cov-
ered” by at least one element from any column and the sum
of the costs associated with the covering columns is opti-
mal (minimum cost in our case). A Boolean matrix is a rec-

tangular matrix of zeros and ones where a covered row is
denoted by a one in the covering columns, There is no
known algorithm for the optimal solution except to try all
possibilities. This involves trying all combinations of the
subsets of columns. For a matrix with n columns, the
number of combinations to try is the power set or 2",
Consider Figure 1 which shows an example Boolean matrix
with m =7 rows and n = 8 columns. Columns 1, 2, 3 and 4
form a cover with a cost of 15; columns 1, 4, 7 and 8 also
form a covering with a cost of 19. The optimal cost is 7
tormed by columns 3, 4, and 6.

As a practical application of the SCP problem, consider the
airline crew scheduling problem. An airline has m flights
to schedule. This is represented as the m rows in a Boolean
matrix such as Figure 1. The airline has n flight crews
depicted by the columns in Figure 1. The Boolean entries
in the matrix indicates which flights each crew is able to
service and at what cost. The optimal solution schedules
flight crews 3, 4, and 6 to service all seven flights at a cost
of 7 units. An excellent formal description of the SCP
problem is given by Moret and Shapiro [11].

Genetic Algorithms

Genetic algorithms(GA) are based on the principles of
natural genetics and survival of the fittest. Genetic algo-
rithms search for solutions by emulating biological selec-
tion and reproduction. In a GA the parameters of the
model to be optimized are encoded into a finite length
string, usually a string of bits. Each parameter is represent-
ed by a portion of the string. The string is called a chromo-
some, and each bit is called a gene. Each string is given a
measure of "fitness" by the fitness function, sometimes
called the objective or evaluation function. The fitness of a
chromosome determines its ability to survive and repro-
duce offspring. The "least fit" or weakest chromosomes of
the population are displaced by more fit chromosomes.

The genetic algorithm is a robust search and optimization
technique using probabilistic rules to evolve a population
from one generation to the next. The transition rules going
from one generation to the next are called genetic recombi-
nation operators. These include Reproduction (of the more
"fit" chromosomes), Crossover, where portions of two
chromosomes are exchanged in some manner, and Muta-
tion. Crossover combines the "fittest” chromosomes and
passes superior genes to the next generation thus providing
new points in the solution space. Mutation is performed
infrequently. A new individual (point in the solution
space) is created by altering some of the bits of an individ-
ual. Mutation ensures the entire state space will eventually
be searched (given enough time), and can lead the popula-
tion out of a local minima. Genetic algorithms retain
information from one generation to the next. This informa-
tion is used to prune the search space and generate plausi-

ble solutions within the specified constraints [3,12].

Genetic algorithm packages for a single processor have
been available for several years. A steady-state GA such as
GENITOR [15] and a generational GA such as GENESIS
[10] are the two example packages. Goldberg and others
provide an excellent in depth study of genetic algorithms
[6,7,9,13]. Furthermore, several researchers have investi-
gated the benefits of using genetic algorithms for solving
combinatorial optimization problems [3-8,12,16].

GA Subpopulations Applied To SCP

Consider a SCP problem with m rows and # columns. A
Chromosome defining a possible covering is depicted as a
bit string of length n. The ith bit of the chromosome corre-
sponds to the jth column of the Boolean matrix represent-
ing the problem. A one bit means the column is included
in the covering, and a zero bit means the column is not
included in the covering. There are obviously 2" possible
chromosomes. A feasible solution is defined as any cover-
ing of the rows of the Boolean matrix. For example, in
Figure 1, the bit strings (11110000), (10010011), and
(11111111) are feasible solutions. An infeasible solution is
represented by a bit string that does not define a covering,
such as (01001000), (10101001), (01010111), and
(00000000). Hence, the optimal solution is a feasible solu-
tion with the minimum cost.

The traditional GA uses a single population pool. The
initial population (either seeded or generated randomly)
can contain both feasible and infeasible solutions. In some
GA’s infeasible solutions are discarded and not placed in
the pool. Infeasible solutions are generally given an ex-
tremely poor or non-existent fitness value, hence they
rarely, if ever, participate in the genetic recombination
operations. In some instances, feasible solutions may be
difficult to initially generate due to the type of problem
under investigation. For example, given a sparse Boolean
matrix representing the SCP, the initial randomly generat-
ed population may have very few, if any, feasible solutions.
The traditional single pool GA could be made to manipu-
late infeasible solutions if the fitness function were proper-
ly adjusted. However, as generations continue and more
and more feasible solutions are generated, the infeasible
solutions are considered more infrequently or not at all.

In this paper, we studied the effect of maintaining separate
population pools of feasible and infeasible solutions and
periodically involving infeasible solutions in crossover
operations regardless of their fitness value. We believe
infeasible solutions often contain an excellent source of
genetic material that should not be overlooked. For exam-
ple, in Figure 1 consider the feasible solution (01011011)
with a cost of 27 versus the infeasible solution (00100100)
where a cost is not defined since a coverine does not occur.

The optimal solution is (00110100) which has a hamming
distance of one from the infeasible solution and a hamming
distance of 6 from the feasible solution. In this case the
infeasible solution is much "closer" to the optimal solution
than the feasible solution. There are several reasons one
might want to consider infeasible solutions in the popula-
tion pool. First, it may be extremely difficult to generate a
feasible solution, perhaps as difficult as generating the
optimal solution. Secondly, involving infeasible solutions
in the search insures diversity in the search space and
allows for a more robust algorithm. Furthermore, if the
solution space is disjoint or non-convex, a more direct path
to an optimal solution might be to traverse through a sec-
tion of the search space containing infeasible solutions.

In our GA model, feasible and infeasible solutions are
maintained in separate subpopulation pools of equal size of
n/2. The total population of size n at each generation
remains constant, We used a steady-state GA, generating
one child at a time and removing the worst chromosome.
We used GENITOR which was modified for our particular
application. The initial population is generated randomly
by placing feasible and infeasible solutions into their
proper pool until one pool has been filled. Thus, the other
pool may not be completely filled initially, but is allowed
to grow up to size n/2 as future children are generated.

The evaluation function for the feasible solution pool is the
cost of the covering, We define rnc as the number of "rows
not covered”. The evaluation function for infeasible solu-
tions is rnc * k + cost (of the partial covering), where £ is
some constant larger than the sum of the costs of all of the
columns. In this way the infeasible solutions are ranked
first by rnc then secondly by the cost of the partial cover-
ing. In all cases we used the uniform crossover operator.
The mutation operation consists of flipping a randomly
selected bit in a string.

We define an X-crossover as one that involves two chro-
mosomes from the feasible pool. A Y-crossover involves
one chromosome from the feasible pool and one from the
infeasible pool. A Z-crossover involves two chromosomes
from the infeasible pool. In all cases the resulting feasible
solutions are placed into the feasible pool and the resulting
infeasible solutions are placed into the infeasible pool.

Results and Conclusions

We have designed a class of algorithms for manipulating
the two population pools. Each algorithm is define in the
form of a triple (x,y,z), where x, y, z represents the percent-
age of time the X, ¥, and Z-crossovers are performed,
respectively. Hence algorithm (95, 4, 1) means that for any
given crossover operation, there is a 95% chance that two
chromosomes from the feasible pool will be selected, a 4%
chance one chromosome from each of the pools will be

selected, and 1% chance that two chromosomes from the
infeasible pool will be selected.

We have also developed a class of oscillation algorithms
that varies x and y percentages with each new trial. As an
example, the first oscillation algorithm (OSCI) holds z
constant at 1% and oscillates x from 75 to 99, then back
down to 75, and so forth in increments and decrements of
1. A second oscillation algorithm (OSC2) holds z constant
at 1% and oscillates x from 60 to 85, then back down to 60,
and so forth in increments and decrements of 1. In all
cases, the y percent is such that x+y is always 99. The x, y,
z values for the oscillation algorithms were selected arbi-
trarily.

To test these algorithms we generated SCP problems of
size 100x100. We generated various sparse Boolean ma-
trices consisting of 3, 8, 12, and 16% random fill (of ones).
The weights of each column were randomly generated in
the range of 1 to 20. For each of the four test matrices we
ran the following GA algorithms: (95,4,1), (90,9,1),
(85,14,1),(80,19,1),(75,24,1), (70,29,1), (65,34,1), OSC1,
OSC2. In each of these algorithms, the x, y, z values were
selected arbitrarily. These algorithms were designed to test
the effect of using the infeasible population pool at differ-
ent rates of involvement. We compared these results with
the traditional single pool GA (Tradnl). The fitness func-
tion described in the previous section was used in all of the
algorithms.

Table I and Table II show the results of solving the 5%
random fill 100x100 SCP problem. The pool size was 600,
and the uniform crossover operator was used. Since we
chose z = 1, the algorithms are represented in the Tables in
form of a (x,y) tuple. We ran each algorithm on 10 differ-
ent test cases. Entries show the resulting cost of the cover-
ing. Table I reports the results using a bias selection from
the infeasible pool. The bias function was described in the
previous section. Table II reports the results when using a
random selection from the infeasible pool. The Best Result
row in Table I and Table II indicates how many times out
of 10 the algorithm generated the best solution. In many
cases several algorithms generated the best solution. We
have no way of knowing if this was the optimal solution or
not. The Beat Tradni tow in Table I and Table II indicates
how many times out of 10 a given algorithm obtained the
same or better results than the traditional GA(Tradnl).

In a similar manner, Table III and Table IV show the re-
sults of the 8% random fill 100x100 SCP problem. Table
V and Table VI show results of the 12% random fill
100x100 SCP problem, and Table VII and Table VIII show
the results of the 16% random fill 100x100 SCP problem.
We did not consider a random fill problem less that 5%
because our tests showed it was rarely possible to deter-
mine any feasible solution, even after several generations.

Furthermore, we did not include tests for a random fill
problem over 16%, because in all of the cases no infeasible
solutions were ever generated, making our algorithms
inappropriate.

Consider the Bear Tradnl row in Table I through Table
VIII. Our nine algorithms performed about the same as the
traditional GA in Table I (5% fill). Our algorithms perform
better than the traditional GA in Table II, suggesting there
may be some importance to random selection over bias
selection in the infeasible pool. Note, however, the excel-
lent performance of all of our nine algorithms as shown in
the remaining Tables. All of our algorithms significantly
and consistently outperformed the traditional GA in Tables
IIT through Tables VIII (8%, 12% and 16% fill).

We also compared the difference in executing each prob-
lem using a bias selection from the infeasible pool, and a
random selection. That is, in each of the problems (5%,
8%, 12%, 16% fill) we compared corresponding entries of
our nine algorithms (Table I versus Table II, Table III
versus Table IV, Table V versus Table VI, and Table VII
versus Table VIII), The results are shown in Table IX.
Notice in all four problems the random select outperformed
the bias select from the infeasible pool. In fact, random
outperformed bias about two to one, except in the 12%
case. When a bias selection was used, perhaps several of
the infeasible solutions were used over and over to the
exclusion of others. The goal of using infeasible solutions
is to find a short cut through the infeasible search space to a
teasible solution space where, perhaps, an optimal solution
is located. Our results suggest, in this case, that all infeasi-
ble solutions should be considered equal.

It is possible for other problems that random selection from
the infeasible pool may be no better or perhaps worse than
a bias selection. However, if random selection from the
infeasible pool for a given application is better than a bias
selection, then there is no reason to maintain an expensive
separate infeasible pool. At some given rate crossover
could be performed with a feasible solution and a newly
created string (which may or may not be feasible). This
could accomplish the same desired results at much less
expense.

Table IX also records the percent of the infeasible and
feasible solutions present in the initial population pools of
the ten test cases for all four problem sizes. In the four
problems (5%, 8%, 12%, 16% fill) the percent of infeasible
solutions present in the initial population was 98.7%,
77.0%. 12.4%, and 1.0% respectively. This re-enforces the
two main points of this paper: (1) The importance of
random selection from the infeasible pool. In Table I, with
only 1.3% feasible solutions initially, it was important to
consider all of the infeasible solutions as possible crossover
mates rather than the selected bias. (Table I versus Table

IT), and (2) the importance of considering infeasible solu-
tions, even if there are very few of them, Consider Table
VII and Table VIII. Only 1% infeasible solutions were
generated initially. Yet their influence was extremely
significant, yielding superior results over the traditional
GA. The traditional GA, of course, with 99% feasible
solutions generated initially, would never consider any of
the infeasible solutions.

Finally, among the nine algorithms we tested, no one algo-
rithm appears to be significantly better than any of the
others. It is possible, however, for a different problem that
one or several of the nine algorithms could be significantly
superior to the others. This simply suggests if the problem
one is solving generates infeasible solutions, then it is
important to include the infeasible solutions in the cross-
over operations on some regular basis.

Future Research

We are currently evaluating other problems that yield a
high percentage of infeasible solutions, such as partitioning
problems. We have access to a parallel GA implemented
for a hypercube. We will be investigating how infeasible
solutions should be manipulated among parallel processors.
Perhaps each processor should be executing a different
(x,y,2) algorithm. There is certainly more work to be done
on fine-tuning the relationship between x, y, and z in an
algorithm. Determining the proper population size is
another important issue in order to maintain an adequate
initial mix of feasible and infeasible solutions. We are
investigating dynamically determining the initial x, y, and z
values for the algorithm based on the percent of feasible
and infeasible solutions found in the randomly generated
initial population pools. Finally, we are looking into
dynamically altering x, y, and z values according to some
criteria as the population matures.

The authors’ address is Department of Mathematical and
Computer Sciences, The University of Tulsa, 600 South
College Avenue, Tulsa, Oklahoma 74104-3189,
sekhar@euler.mcs.utulsa.edu,
rogerw(@penguin.mcs.utulsa.edu

Acknowledgements

This research has been partially supported by OCAST
Grant ARO-038. The authors also wish to acknowledge
the support of Sun Microsystems Inc. The authors wish to
acknowledge referee #46 for many helpful suggestions and
enhancements to the paper.

References

[1] 5. Baase, "Computer Algorithms, Introduction to Design
and Analysis", Addison-Wesley. 1988.

(2]

(3]

[4]

(3]

(6]

7

(8]

Beard, R.A., Lamont, G.B., "Determination of Algorithm [9] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
Parallelism in NP-Complete Problems for Distributed and Machine Learning, Addison-Wesley, 1989.
Architectures”, Proceedings of the Fifth Distributed [10] J. Grefenstette, GENESIS, Navy Center for Applied Re-
Memory Computing Conference, Charleston, SC., April, search in Artificial Intelligence, Navy research Lab., Wash.
1990, pp.42-51. D.C. 20375-5000.
Blanton, J. L., and Wainwright, R. L., "Vehicle Routing [11] Moret, B.M.E., Shapiro, H.D., Algorithms from P to NP,
with Time Windows using Genetic Algorithms" Proceed- Volume I Design & Efficiency, Benjamin/Cummings, 1991.
ings of the Sixth Oklahoma Symposium on Artificial Intel- [12] Mutalik, PM., Knight, L.R., Blanton, J.L. and Wainwright,
ligence, November, 1992, pp. 242-251. R.L. "Solving Combinatorial Optimization Problems Using
D.E. Brown, C.L. Huntley and A.R. Spillane, "A Parallel Parallel Simulated Annealing and Parallel Genetic Algo-
Genetic Heuristic for the Quadratic Assignment Problem”, rithms", Proceedings of the 1992 ACM/IEEE Symposium
Proceedings of the Third International Conference on on Applied Computing, March 1-3, 1992. pp. 1031-1038.
Genetic Algorithms, Morgan Kaufmann, 1989. [13] G. Rawling, ed., Foundations of Genetic Algorithms,
Corcoran, A.L. and Wainwright, R.L. "A Genetic Algorithm Morgan Kaufmann Publishers, 1991.
for Packing in Three Dimensions”, Proceedings of the 1992 [14] R. Sedgewick, "Algorithms", Addision-Wesley, 1988.
ACMY/IEEE Symposium on Applied Computing, March 1-3, [15] D. Whitney and J. Kauth, GENITOR: A Different Genetic
1992, pp. 1021-1030. Algorithm, Proceedings of the Rocky Mountain Conference
L. Davis, ed., Genetic Algorithms and Simulated Annealing, on Artificial Inteiligence, Denver, Co., 1988, pp. 118-130.
Morgan Kaufmann Publisher, 1987. [16] D. Whitney, T. Starkweather, and D. Fuquat, "Scheduling
L. Davis, ed., Handbook of Genetic Algorithms, Van Nos- Problems and Traveling Salesman: The Genetic Edge
trand Reinhold, 1991. Recombination Operator”, Proceedings of the Third Inter-
K.A. De Jong and W.M. Spears, "Using Genetic Algorithms national Conference on Genetic Algorithms, June, 1989.
to Solve NP- Complete Problems”, Proceedings of the
Third International Conference on Genetic Algorithms,
June, 1989, pp. 124-132.
Test Case Algorithm
©54) | 909) | 8519 | 8019) | @529 | 7029) | 6534 | osc1 | 0sC2 | Tradni

1 167 128 128 125 130 128 130 129 121 130

2 158 160 136 132 143 133 130 144 137 137

3 155 145 160 159 134 164 140 159 168 149

4 146 148 147 145 154 154 146 148 154 149

5 182 157 145 144 150 139 169 155 147 139

6 197 193 210 209 191 187 183 190 187 182

7 192 185 166 179 176 176 176 193 172 178

8 140 152 140 144 140 140 140 140 140 152

9 169 165 162 162 165 151 174 190 154 154

10 129 126 126 136 126 133 127 130 130 129

Best Resuit 1/10 /10 | 2710 | 1/10 310 1 310 | 210 1/10 3/10 210

Beat Tradni 3/10 310 | &10 | 410 | 510 | &10 | 7/10 3/10 5/10 —

Table I: Resuits of 5% Fill 100x100 SCP. Pool Size = 600
Uniform Crossover, Bias Infeasible Selection
Test Case Algorithm
954 | 909 | @514) | 8019) | 7529 | 7029) | 6539) | osc1 | oscz | Trant

1 131 128 134 123 128 126 123 121 126 130

2 145 131 131 131 131 131 131 135 129 137

3 144 134 134 128 138 129 137 153 145 149

4 146 164 148 157 152 163 148 149 147 149

s 160 162 154 145 148 152 152 148 148 139

6 181 183 191 183 192 182 182 182 181 182

7 167 185 181 167 170 168 179 173 166 178

8 142 140 140 140 140 140 148 144 140 152

9 150 169 159 167 154 138 146 162 154 154

10 132 136 136 126 136 136 136 130 129 129

Best Resuit 3/10 1/10 1/10 4/10 /10 | 210 | 0/10 1/10 3/10 1/10

Beat Tradnl | 6/10 4/10 4/10 6/10 &10 | 7710 | 7/10 6/10 9/10 -

Table [I: Resuits of 5% Fill 100x100 SCP. Pool Size = 600

IIniform Crocenver Random Imfaacihle Colace: ms

Rows Columns
1121345678
1 O(1f{1j0(1]0]0}|1
2 1110011010
3 oO(of1|]1{0f(1}]1]0
4 1110100 |1}1
5 ojo|1|1/0|1]01|0
6 o)1 /0110|010
7 1/10(1({0|1]0]07]0
Cost 3161214511715

Figure 1: Example SCP Represented as a Boolean Matrix

Test Case Algorithm
(954) | (90,9) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradnl
1 88 88 88 92 %0 90 87 88 90 88
2 117 124 113 122 114 108 108 108 107 124
3 109 106 105 109 105 106 106 104 104 112
4 118 120 121 129 118 121 117 114 116 120
5 114 109 104 110 113 112 112 114 104 106
6 124 121 121 124 117 119 123 123 124 126
7 108 104 105 104 104 115 110 120 104 118
8 83 87 83 82 85 84 84 82 84 85
9 89 85 84 84 85 92 84 92 84 96
10 147 140 130 137 138 138 130 137 130 145
Best Result 0/10 1/10 2/10 3/10 2/10 0/10 2/10 3/10 5/10 0/10
Beat Tradnl 8/10 8/10 9/10 7/10 8/10 7/10 9/10 8/10 9/10 -—
Table III: Results of 8% Fill 100x100 SCP. Pool Size = 400
Uniform Crossover, Bias Infeasible Selection
Test Case Algorithm
(954) | (90,9) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradnl

1 90 95 88 90 90 95 87 87 87 88
2 117 112 107 121 107 107 108 117 107 124
3 100 102 100 106 110 105 108 100 101 112
4 114 109 128 115 120 116 116 119 118 120
5 112 108 104 106 106 105 106 104 111 106
6 122 124 118 127 122 123 121 121 121 126
7 108 108 113 102 110 102 104 116 109 118
8 81 82 80 81 81 81 81 81 81 85
9 86 89 84 84 85 84 85 85 84 96
10 135 130 133 133 141 128 130 139 135 145
Best Result 1/10 1/10 6/10 2/10 1/10 4/10 1/10 3/10 3/10 0/10
Beat Tradnl 8/10 8/10 9/10 8/10 9/10 9/10 10/10 10/10 9/10 -—-

Table IV: Results of 8% Fill 100x100 SCP. Pool Size = 400

IIniform Croscover Random Infeacible Selection

Test Case Algorithm
(954) | (90,9) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradni
1 50 49 53 49 49 50 49 S0 49 55
2 57 60 57 57 57 57 58 61 63 57
3 54 54 55 56 54 54 54 53 54 55
4 71 70 74 76 72 72 72 69 70 72
5 74 78 78 78 76 74 77 69 74 78
6 76 77 76 77 76 71 71 72 71 72
7 58 56 59 54 56 56 62 59 55 59
8 44 42 42 42 44 42 42 42 44 48
9 56 55 60 54 58 59 58 57 55 56
10 76 77 77 76 71 75 76 76 77 79
Best Result 1/10 2/10 2/10 5/10 3/10 3/10 3/10 4/10 2/10 1/10
Beat Tradnl 9/10 8/10 7/10 7/10 8/10 9/10 7/10 8/10 9/10 -
Table V: Results of 12% Fill 100x100 SCP. Pool Size = 400
Uniform Crossover, Bias Infeasible Selection
Test Case Algorithm
(954) | (90,9) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradnl

1 49 51 49 49 50 51 49 49 49 55
2 61 58 59 55 59 55 56 57 58 57
3 56 60 55 63 54 53 54 56 57 58
4 76 72 70 72 72 70 70 70 70 72
5 72 78 74 77 69 79 75 69 74 78
6 79 75 71 71 71 72 78 76 76 72
7 58 55 57 58 58 59 58 59 58 59
8 42 43 42 43 43 43 42 45 42 48
9 56 52 61 59 54 58 54 52 54 56
10 75 80 79 77 77 75 75 79 71 79
Best Result 2/10 2/10 4/10 3/10 2/10 3/10 3/10 4/10 4/10 0/10
Beat Tradnl 6/10 6/10 8/10 8/10 9/10 8/10 9/10 8/10 8/10 -

Table VI: Results of 12% Fill 100x100 SCP. Pool Size = 400

Uniform Crossover, Random Infeasible Selection

Test Case Algorithm
(954) | (909) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradnl
1 28 28 29 28 28 28 29 29 30 28
2 42 46 46 46 44 41 42 44 46 45
3 36 36 36 38 34 36 36 34 36 39
4 52 50 50 50 50 50 51 50 53 50
5 58 65 58 61 60 57 60 57 58 63
6 31 30 30 30 30 31 30 30 30 30
7 35 38 36 34 35 35 35 35 35 40
8 33 34 34 34 33 33 33 34 32 35
9 41 37 41 41 41 37 37 37 37 41
10 50 52 50 51 51 48 48 50 49 51
Best Result 1/10 4/10 2/10 4/10 4/10 6/10 3/10 5/10 3/10 3/10
Beat Tradnl 8/10 7/10 8/10 9/10 10/10 9/10 8/10 9/10 7/10 --
Table VII: Results of 16% Fill 100x100 SCP. Pool Size = 400
Uniform Crossover, Bias Infeasible Selection
Test Case Algorithm
95.4) | (90,9) | (85,14) | (80,19) | (75,24) | (70,29) | (65,34) | OSC1 | OSC2 | Tradnl

1 29 29 28 28 28 28 28 28 29 28
2 45 44 42 44 46 41 44 43 44 45
3 38 36 34 36 36 34 38 36 36 39
4 52 50 50 50 50 50 50 50 50 50
5 59 58 57 57 57 60 58 60 57 63
6 30 30 30 30 30 30 30 30 31 30
7 37 35 35 35 35 35 36 36 35 40
8 32 33 32 32 33 37 32 33 34 35
9 41 37 37 40 39 37 37 37 37 41
10 50 50 51 48 53 48 48 50 48 51
Best Result 2/10 4/10 8/10 7/10 5/10 8/10 6/10 4/10 5/10 3/10
Beat Tradnl 8/10 9/10 10/10 10/10 8/10 9/10 10/10 10/10 8/10 -

Table VIII: Results of 16% Fill 100x100 SCP. Pool Size = 400
Uniform Crossover, Random Infeasible Selection

Percent Fill 100x100 SCP
5 8 12 16
% Bias is Better 322 | 27.8 | 389 | 233
% Random is Better | 57.8 | 57.8 | 42.2 | 40.0
% Same 10.0 | 144 | 18.9 | 36.7
% Initial Infeasible 98.7 | 770 | 124 1.0

Table IX: Bias versus Random Infeasible Selection

