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Abstract

The applications of a modified version of the simulated annealing algorithm for solving the edge-coloring problem, which consists of partitioning the edges of a graph into the minimum number of disjoint subsets such that no two edges in a given subset are adjacent, was investigated.  With the exception of coloring bipartite graphs, finding a minimum edge coloring of a graph is NP-Complete.  The traditional simulated annealing algorithm was modified to incorporate an additional perturbation (disruptive) operator.  The details of the modifications to the simulated annealing algorithm, and the technique we chose to represent solutions for the edge-coloring problem are presented in the paper.   We also describe two perturbation operators used by our modified technique, along with the heuristic function used to evaluate solutions.  Our algorithm for solving the edge-coloring problem was tested on over sixty test graphs from the literature.  In every case, our algorithm found the optimal edge coloring.  We compared our algorithm to a grouping genetic algorithm technique for solving this problem published recently in the literature.  Our results over a wide variety of test graphs were vastly superior to the grouping genetic algorithm technique.

1 INTRODUCTION

Generally, for NP-Hard partitioning problems like the vertex-coloring problem, heuristic optimization techniques, such as simulated annealing, are well suited for approximating solutions.  The edge-coloring problem, which is another NP-Hard partitioning problem, is no exception.  Solutions to the edge-coloring problem have numerous practical applications including timetable problems (Bondy & Murty, 1976), partitioning problems (Fiorini & Wilson, 1977), and certain types of scheduling problems.  The edge-coloring problem consists of partitioning the edges of a graph G into the minimum number of disjoint subsets such that all edges in a given subset are not adjacent.  The smallest number of subsets into which the edges of a graph can be partitioned is called the chromatic index of the graph G, denoted as (’(G) (Fiorini & Wilson, 1977).  The chromatic index of any graph is bounded by (max (G) ≤χ’(G) ≤(max (G)+ μ, where (max (G) is the maximum degree of the graph and μ is the maximum edge multiplicity of the graph (Vizing, 1964).

Khuri et al. (2000) provides the most recent and comprehensive work on various techniques for solving the edge-coloring problem.  Khuri developed and tested three approaches for approximating solutions to instances of the edge-coloring problem.  By far, Khuri’s most successful approach to approximating solutions to the edge-coloring problem came from his use of a grouping genetic algorithm.  Grouping genetic algorithms, which are a subclass of genetic algorithms, focus on approximating solutions to problems with grouping properties, such as the edge-coloring problem.  Using a grouping genetic algorithm, Khuri was able to find the optimal solution for nearly all of the graphs he tested.  However, as the density, (which is the ratio of the number of edges to the number of vertices in a graph), increased, the performance of his approach faltered, producing approximations using as many as three additional colors beyond the optimal number.

In order to overcome the deficiencies experienced by Khuri’s algorithm, we developed a different approach to the edge-coloring problem.  In our approach, solutions to the edge-coloring problem were “forged” using simulated annealing rather than “evolved” using genetic algorithms.  We applied a slight modification to the traditional simulated annealing technique.  This modification consisted of applying a secondary perturbation operator at key times during the execution of the algorithm.  This modified technique was then applied to 63 simple graphs and 15 multigraphs from various sources in the literature such as Knuth’s Stanford GraphBase (1993) and the DIMACS ftp site (2000), and compared to the results obtained by Khuri (2000).

The rest of this paper is organized as follows:  Section 2 presents the modifications we made to the traditional simulated annealing algorithm.  Section 3 depicts the representation we used to encode a solution to the edge-coloring problem, and the definition of the heuristic function used to evaluate candidate solutions.  The algorithms used by the perturbation, and the additional perturbation operators to improve solutions, as well as the details of how solutions are initially generated are also presented in Section 3.  Section 4 presents the results of several runs of our modified simulated annealing algorithm on various the test graphs from the literature.  Section 5 describes the conclusions of our research, and comparisons to results obtained Khuri’s grouping genetic algorithm.  Acknowledgements and references are given at the end of the paper.

2 SIMULATED ANNEALING AND MODIFICATIONS

Traditionally, simulated annealing uses only one operation—perturbation.  Perturbation, which is similar in functionality to mutation in genetic algorithms, attempts to improve a solution by making small modifications.  The resultant solution created by perturbation is accepted or rejected based on several parameters given at runtime.  For the edge-coloring problem, perturbation alone was not able to solve certain graphs in a reasonable amount of time; therefore, an additional operator was implemented to overcome this weakness.  The new operator, which we call the “kick” operator, is similar in functionality to perturbation.  The kick operator functions as follows: if a specified number of iterations has passed during which there has been no heuristic improvement, then some perturbation on the current solution is performed.  This perturbation is intended to disrupt the current solution such that further iterations of the modified simulated annealing algorithm will lead to heuristic values exceeding those found before the kick was executed.  Unlike the perturbation operation, the modifications made by the kick operator are accepted regardless of any benefits or losses that result.  The modified simulated annealing algorithm is described as follows (it is assumed that the reader is familiar with simulated annealing): 

1. Generate an initial solution and set the change counter to zero.

2. Given the parameters T, the initial temperature, (, the rate at which the temperature decreases, N, the initial number of iterations to perform before decreasing the temperature and increasing the number of iterations to be performed, (, the rate at which N increases, and C, the number of iterations allowed to occur in which the current solution does not improve before the kick operator is executed.  Execute the following three steps N times.

a. Execute the perturbation operator on the current solution.  This will produce a new solution.

b.   Choose a new current solution by weighing the new solution against the current solution with the acceptance function.  The acceptance function will choose one of the two solutions based on the current temperature, T, the heuristic value of the current solution, and the heuristic value of new solution.  The acceptance function behaves as follows: If the new solution is better than the current solution, then the new solution is chosen and the change counter is reset to zero; however, if the new solution is worse than the current solution, a random real number is generated and compared against a value based on the current temperature and the heuristic difference between the current and new solutions.  If the random real number is greater than or equal to the calculated value, then the new solution is chosen and the change counter is reset; otherwise, the current solution is chosen and the change counter is incremented by one (except for the change counter logic, this a traditional simulated annealing algorithm).

c. After the acceptance function has chosen a new current solution, test the following condition: if the change counter equals C, then perform the kick operation and reset the change counter to zero.

3. Increase N to N*(, and decrease T to T*(..

4. Perform the following test: if the total number of iterations performed equals the maximum number of iterations allowed, the maximum value of the heuristic is found, or a specified time limit is exceeded, then return the current solution, otherwise, repeat step 2a.

3 SOLUTION REPRESENTATION, HEURISTIC EVALUATION, AND OPERATOR ALGORITHMS

3.1 SOLUTION REPRESENTATION, HEURISTIC EVALUATION, AND OPERATOR ALGORITHMS

The solution representation is extremely important to the success of any algorithm.  Our solution representation of the edge coloring of a graph is simply an array of integers representing the color assigned to each edge with the edges of a graph numbered a priori.  This proved to be extremely successful.  The first number represents the color of edge 1; the second number represents the color of edge 2; and so on.  This representation lends itself to efficient color lookup, efficient heuristic evaluation, and efficient memory usage.  Figure 1 shows an example graph and the solution representation for that graph.







SOLUTION

EDGE
1
2
3
4
5
6

COLOR
3
1
2
3
1
4

Figure 1: Solution Representation

3.2 Heuristic Function

The heuristic function used for this problem is defined as Σ [d(i)–invalid(i)] for i = 1..n, where d(i) is the degree of the ith node, invalid(i) is the number of edges with the same color that are connected to the ith node, and n is the number of nodes in the graph.  It is important to note that Σ d(i) for i=1..n is a fixed constant for a given graph. Thus, when the value of the heuristic function is equal to Σ d(i) for i=1..n, a solution is feasible.  Therefore, the heuristic function measures a solution’s distance to feasibility; consequently, higher heuristic values indicate solutions that are closer to feasibility.  In addition, the number of usable colors is a fixed constant specified at run-time.  Thus, annealing can stop when the heuristic value of the current solution is equal to Σ d(i) for i=1..n, indicating that no two adjacent edges share the same color.

3.3 Perturbation Function

The pertubation function is a greedy operation.  The perturbation operator randomly selects one node in which infeasible edges are incident.  The operator then randomly selects one of those incident infeasible edges.  Next, the operator attempts to assign a non-conflicting color to the selected edge.  If a non-conflicting color cannot be found, then the selected edge is assigned a random color.

For example, consider Figure 2a.  Assume that node 1 is randomly selected.  Observe that edges 1 and 2, which are incident to node 1, have the same color, (color 1).  Assume that edge 1 has been randomly selected.  Then a free color (a color other than color 1 in this case) is randomly selected.  Assume the free color selected was color 3, then color 3 is assigned to edge 1 (see figure 2b).  If no free color exists, then edge 1 receives a random color that was not the color of any edge connected to node 3 to which edge 1 is adjacent (node 3 has the highest degree).
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Figure 2: Perturbation Example with Node 1 Selected.

3.4 Kick Function

The kick function is a disruptive operation that reassigns a new color to a randomly selected edge with an invalid color.  Empirical results support the claim that this operator is able to overcome many of the local hurdles that the heuristic function presents, producing the optimal solution on certain graphs in ¼ of the time required for traditional simulated annealing to produce the same results.  On every graph we tested, traditional simulated annealing was able to produce an optimal solution.  However, on many graphs, depending upon the seed used, traditional simulated annealing required as many as four times the number of iterations compared to our modified simulated annealing algorithm.  As a kick operator example, consider again Figure 2a.  In this case, edge 1 has been assigned an invalid color, and is, therefore, a candidate for the kick operation.  Assume that the kick operator randomly chose edge 1.  Edge 1 would be reassigned a random valid color, in this case, 3. If no color for edge 1 had existed, which was not in conflict with other colors assigned to adjacent edges, then edge 1 would have been assigned a random color.

3.5 Initial Solution Generation

The initial solution is constructed using the following algorithm: first, find the node with the highest degree.  Second, assign a different color to each edge connected to the node with the highest degree.  Finally, the remaining edges are then assigned random colors.  Note the range of valid colors for the remaining edges is reduced by the colors of edges connected to the node with the highest degree.  For example, in Figure 1, node 3 has the highest degree; thus, edges 2, 3, 4, and 6 must always have different colors.  As a result, this significantly reduces the search space for any given graph.  Furthermore, the colors of the edges connected to the vertex with the highest degree do not change!  This is an application of the reduction principle presented in (Corcoran & Wainwright, 1996), and proved to be significant to the success of our algorithm.  Also the number of usable colors is a fixed constant specified by the user at runtime.  Fixing the number of usable colors in this manner turned out to be a critical aspect of the success of our algorithm.  Fixing the usable colors allows the user to specify a minimum quality for solutions.  Thus, all the user has to do is specify the optimal number of colors to obtain an optimal solution

4 RESULTS

The performance of our modified simulated annealing algorithm and the grouping genetic algorithm were compared on 63 problem instances taken from various sources in the literature such as the DIMACS challenge ftp site (2000) and the Stanford GraphBase (1993).  Graph density values ranged from 2 edges per node all the way up to 99.5 edges per node.  In addition, graphs with a wide range of other properties, such as completeness, were tested.  Table 1 depicts the results obtained for the 63 problem instances from our modified simulated annealing algorithm and the grouping genetic algorithm described by Khuri (2000).  For the modified simulated annealing algorithm, the following parameters were used: T = 0.0,( = 0.0, ( = 1.0, N = 1000, and C=500...1250.  For Khuri’s grouping genetic algorithm, the following parameters were used: mutation rate = 0.2, crossover rate = 0.6, and population size = 20.  The Problem Instance (left half) portion of Table 1 lists the datasets used and various properties of those datasets.  The first 21 datasets are complete graphs named completex.col, where x is the number of nodes in the graph.  The remaining test graphs were taken from Donald Knuth’s Stanford GraphBase (1993) and the DIMACS ftp site (2000).  The column headed by ( indicates the maximum degree for each graph, and, for many graphs, the minimum number of colors that can be used to color that graph.

The results shown in the right portion of Table 1 record the # of iterations, the # of colors used, and the time required (in seconds) to reach the optimal solution for our modified simulated annealing algorithm.  We ran our modified simulated annealing algorithm on the test datasets using an Intel Pentium III 700Mhz processor running Microsoft Windows 2000 Professional and Sun’s JDK version 1.3.  Optimal solutions, which are indicated as a bold entry in the column (# of colors used), are solutions where the number of colors used were in the range of [(…(+μ], where μ is the maximum edge multiplicty of the graph.

Khuri et al. (2000) research represents the most recent work on this topic.  In his paper he developed three techniques for solving the edge-coloring problem, the best of which was his GGA algorithm.  The results from Khuri’s GGA algorithm for the 63 test graphs are given in the last column under the heading GGA results.  Similarly, entries in the column (GGA Results) that are depicted in bold represent optimal solutions.  Our algorithm found the optimal solution in all 63 cases.  Khuri’s grouping genetic algorithm found the optimal solution in 21 of the 63 cases.

5 Conclusions

The results indicate that the edge-coloring problem lends itself very nicely to our modified simulated annealing algorithm.  Impressively, our modified simulated annealing algorithm generated optimal solutions for every test data set.  This includes all of the multigraphs from the Stanford GraphBase, the simple graphs from the DIMACS ftp site, and the generated complete graphs.  The optimal coloring was even obtained for a complete graph with 200 nodes.  For every dataset except those that formed a complete or regular graph with an odd number of nodes, the number of colors used in the final solution was equal to (, the optimal number.  In the cases in which datasets formed a complete or regular graph with an odd number of nodes, the number of colors used increased to (+1; however, the chromatic index of a complete or regular graph, Kn, for which n is odd, is (+1, thus, all results in which (+1 colors were used were optimal as well (Rosen, 2000).  The empirical results obtained using the modified simulated annealing algorithm support the claim that it is superior in performance when compared to recently developed algorithms for the edge-coloring problem.  The use of only a fixed number of colors was of critical importance to the success of the modified simulated annealing technique in finding optimal solutions to the graphs tested.  Limiting the number of usable colors allowed the modified simulated annealing technique to determine with absolute certainty whether or not the best solution, given the initial parameters, had been found.  Also, by fixing the number of usable colors to the optimal number, the modified simulated annealing algorithm worked only towards finding the optimal solution while retaining the ability to produce feasible solutions that are not optimal. Also, the masking performed in assigning colors of edges reduced search space and lead to faster discoveries of optimal solutions.  The incorporation of the kick operator, while unnecessary in producing optimal solutions, greatly reduced the average number of iterations required to find solutions to instances of the edge-coloring problem.  Finally, the modified simulated annealing algorithm proved to be an excellent algorithm for solving the edge-coloring problem over a wide variety of graphs.
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Table 1: Edge Coloring Results

PROBLEM INSTANCE
RESULTS


File Name
# of nodes
# of edges
Density

(
Iterations
# of colors used
Time (seconds)
GGA results











complete20.col
20
190
9.5
19
795
19
1
20

complete25.col
25
300
12
24
1321
25
2
26

complete30.col
30
435
14.5
29
1966
29
3
31

complete35.col
35
595
17
34
2697
35
4
37

complete40.col
40
780
19.5
39
4116
39
4
41

complete45.col
45
990
22
44
6106
45
5
47

complete50.col
50
1225
24.5
49
6870
49
6
52

complete55.col
55
1485
27
54
7233
55
7
58

complete60.col
60
1770
29.5
59
9973
59
11
63

complete65.col
65
2080
32
64
12817
65
17
70

complete70.col
70
2415
34.5
69
16789
69
23
75

complete75.col
75
2775
37
74
19892
75
35
78

complete80.col
80
3160
39.5
79
22407
79
43
83

complete85.col
85
3570
42
84
25563
85
52
88

complete90.col
90
4005
44.5
89
26638
89
77
93

complete95.col
95
4465
47
94
31124
95
92
98

complete100.col
100
4950
49.5
99
36267
99
127
104

complete105.col
105
5460
52
104
40065
105
169
109

complete110.col
110
5995
54.5
109
37493
109
180
114

complete115.col
115
6555
57
114
40967
115
233
119

complete200.col
200
19900
99.5
199
174191
199
3341
203

anna.col
138
986
7.14
142
224
142
2
142

david.col
87
812
9.33
164
113
164
1
164

homer.col
561
3258
5.80
198
590
198
5
198

huck.col
74
602
8.14
106
118
106
1
106

jean.col
80
508
6.35
72
125
72
1
72

mile250.col
128
774
3.02
32
470
32
1
32

miles500.col
128
2340
9.14
76
1985
76
4
77

miles1000.col
128
6432
50.25
172
6326
172
133
173

miles1500.col
128
10396
81.22
212
16563
212
171
213

queen5_5.col
25
320
12.8
32
377
32
1
33

queen6_6.col
36
580
16.11
38
867
38
1
39

queen7_7.col
49
952
19.43
48
1289
48
2
48

queen8_8.col
64
1456
22.75
54
2215
54
3
54

queen9_9.col
81
2112
26.07
64
2841
64
5
64

queen8_12.col
96
2736
28.5
64
5249
64
9
65

queen10_10.col
100
2940
29.4
70
4643
70
9
70

Table 1: Continued
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Density
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# of colors used
Time (seconds)
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queen11_11.col
121
3960
32.73
80
5540
80
15
80

queen12_12.col
144
2596
36.05
86
8136
86
33
86

queen13_13.col
169
6656
39.38
96
9897
96
56
97

queen14_14.col
196
8372
42.71
102
12869
102
96
102

queen15_15.col
225
10360
46.05
112
15047
112
143
113

queen16_16.col
256
12640
49.38
118
19731
118
243
119

myciel3.col
11
20
1.81
5
12
5
1
5

myciel4.col
23
71
3.09
11
25
11
1
11

myciel5.col
47
236
5.02
23
119
23
1
23

myciel6.col
95
755
7.95
47
326
47
2
47

myciel7.col
191
2360
12.36
95
820
95
3
95

games120.col
120
1276
10.63
26
1836
26
2
27

le450_15a.col
450
8168
18.15
99
4051
99
35
99

le450_15b.col
450
8169
18.15
94
4293
94
36
94

le450_15c.col
450
16680
37.06
139
12153
139
234
139

le450_15d.col
450
16750
37.22
138
12297
138
231
140

le450_25a.col
450
8260
18.35
128
3558
128
33 
129

le450_25b.col
450
8263
18.36
111
4018
111
38
112

le450_25c.col
450
17343
38.54
179
9887
179
243
180

le450_25d.col
450
17425
38.72


157
12030
157
440
159

le450_5a.col
450
5714
12.7
42
4764
42
25
43

le450_5b.col
450
5734
12.74
42
4677
42
25
43

le450_5c.col
450
9803
21.8
66
9175
66
93
67

le450_5d.col
450
9757
21.68
68
8485
68
88
69

fpsol2.i.3.col
325
8688
26.73
346
3082
346
51
347
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� Optimal solutions are indicated in bold.


� Density is the ratio of the # of edges to the # of vertices in a graph.


� Optimal solutions are indicated in bold.


� Density is the ratio of the # of edges to the # of vertices in a graph.






