Proceedings of the 23rd ACM
SIGCSE 1992, Kansas City, MO.

SIGCSE Symposium,
, March 5-6, 1992,

Introducing Functional Programming
in Discrete Mathematics

Roger L. Wainwright
Department of Mathematical and Computer Sciences
The University of Tulsa
600 South College Avenue
Tulsa, Oklahoma 74104-3189
rogerw@tusun2.mcs.utulsa.edu

ABSTRACT

Programming assignments in my discrete mathematics
course have changed recently due to an influx of non-
computer science students with little or no programming
experience. Programming problems are now assigned
in a simple to learn, easy to write, mathematical-like
functional programming language that requires no
previous programming experience. In theory, all stu-
dents begin on the same basis. Exposure to the concepts
of functional programming is an essential part of
computer science and mathematics curricula. For most
students this is the only exposure to functional pro-
gramming. Functional programming and discrete
mathematics arc a natural combination. One week of
lectures and perhaps a small monetary investment is all
that is required. An instructor totally unfamiliar with
functional programming can easily learn enough in a
week or so to present a simple inroduction to the topic.
Introducing functional programming concepts in dis-
crete mathematics was very successful. Students found
the exposure to functional programming to be an insight
they had never experienced before and enthusiastically
recommended an introduction to functional program-
ming be a permanent part of the course.

1. INTRODUCTION

I have taught Discrete Mathematics off and on over the
past 15 years. The course has evolved over the years,
but for the most part has been taught as a "traditional”

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Assaciation for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific parmission.
® 1992 ACM 0-89791-468-6/92/0002/0147...81.50

147

computer science discrete mathematics course. The
course is taught at the second semester sophomore level
for computer science majors. The prerequisites include
a freshman two semester programming sequence and
Calculus I. Programming assignments have always
been part of the course. Usually three programs are
assigned; the last one is rather complicated involving
some detailed aspect of graph theorv. The students
almost exclusively choose w program in C.

A recent change in the Mathematics degree require-
ments has had an impact on the student population in
the discrete mathematics course. Discrete mathematics
is currently cross listed as a mathematics course.
Mathematics and mathematics education majors are
currently allowed to take discrete mathematics as a
mathematics elective. As a result, the student popula-
tion in the discrete mathematics course changed recently
from almost 100% computer science majors to 70%
computer science majors and 30% mathematics majors.

The Problem: mathematics students enter the course
with little or no prior computing background. Mathe-
matics students who minor in computer science have the
necessary background, but mathematics majors who
minor in engineering or operations research, or educa-
tion at our university are not required to take the pre-
requisite programming courses. There is insufficient
staff to justify two separate courses one for each major,
and there are not enough students to justify two sec-
tions.

Solution I: Teach the course without any programming
assignments. This is the simplest solution. It is also an
acceptable solution. Many discrete mathematics
courses are taught with no programming assignments
even when all of the students are computer science

majors. Programming is certainly not an integral part of
the course, and a rigorous discrete mathematics course
can be taught without any programming assignments.

Solution IT: Assign programming problems in a simple
to learn, easy to write, mathematical-like functional
programming language that requires no previous pro-
gramming experience. The concepts of functional
programming are easy and natural for mathematics and
computer science students. Exposure to functional
programming is an essential part of a computer science
curriculum, and a discrete mathematics course is an
excellent opportunity to present an introduction to func-
tional programming. For most students this is the only
exposure to functional programming. Functional pro-
gramming techniques are helpful as a specification tool
for algorithms, theorems, and other concepts. At this
point none of the students (computer science or mathe-
matics) have studied functional languages before. In
theory, all students begin on the same basis. The
mathematics students should not be at any disadvantage
having little or no prior programming experience.

2. FUNCTIONAL LANGUAGES

This overview of functional languages is intended for
the reader with little or no exposure to functional pro-
gramming. In a functional programming language,
programs consist entirely of functions. Functional
programming languages emphasize describing the re-
sults of a computation and focus less on how to perform
the computation. This relieves the programmer of the
burden of describing the flow of control. Functional
programs contain no assignment statements, in the sense
that once a variable is given a value it can never be
changed. Functional programs contain no side-effects
of any kind. Thus expressions can be evaluated at any
time, in any order. Variables can be replaced by their
values at any time. This allows the program to be
modularized into small simple modules. Functional
programming languages have many advantages. Pro-
grams are written in a simple succinct mathematical-
like notation. Consequently, functional programs tend
to be easier to read, write, verify and modify than
programs written in a procedural language. Using a
functional (declarative) programming language, the
programmer approaches a problem at a higher level of
abstraction. Modern functional languages support pat-
tern matching, user-defined data types, abstract data

types, polymorphic types, higher order functions, infi-
nite data structures by lazy evaluation, currying func-
tions, and other features. Burton and Yang[2] and
Hughs[3] give excellent overviews and illustrate the
benefits of functional programming languages.

In my course, I introduced the students to the functional
language, Miranda. Miranda is a trademark of Research
Software Ltd. Although Miranda supports several data
types, for simplicity, only the data type, list, is used. A
list of the first 5 integers in Miranda is represented as
[1,2,3,4,5] or [1..5]. Lists are concatenated using ++
(ie., [1,2] ++ [3,4,5] is [1..5]), and an element is "cons"
to a list using : (ie., 1:[2,4]is [1,2,4]). Consider the
following quicksort function (supplied by Miranda) that
sorts a list of numbers. Notice the succinct mathemati-
cal-like notation specifying what is to be done and not
how to do it.

>gsort[] =]
>qsort (a:x) = gsort[b | b<-x; b<=a] ++ [a] ++
> gsort[b | b<-x; b>a]

The function is written recursively. The base case is
listed first and indicates that gsort of an empty list
returns an empty list. The notation (a:x) in Miranda is
used to represent a list where g is the first element, and
x represents all of the remaining elements of the list, if
any. Thus gsort of a non-empty list results in three lists
concatenated together. The first list, for example, is the
result of gsort on the list of elements b such that b
comes from x and b<=a. Notice the "pivot" is the first
element in the list, . Furthermore, the details of the
"partitioning” algorithm are not specified, only that a
partitioning must be done. This function covers all
possible arguments: an empty list and a non-empty list.
Miranda will match the actual argument to each gsort
function to determine which of the two gsort functions
to invoke, Consider the following function for calculat-
ing all primes.

>primes = sieve[2..]
>sieve(p:x) = p:sieve[n | n<-x; n mod p ~=0]

The function primes has no arguments and invokes the
sieve function with an infinite list! This is an excellent
example of lazy evaluation, which means that an ex-
pression is evaluated as it is needed. Hence the values
in [2..] are generated as needed. Furthermore, as each

value for n comes from the infinite list x, another sieve
function can be invoked. Furthermore, when part of the
result represented by p is determined, it is displayed to
the screen.

The reader is encouraged to study the following func-
tions to discover how succinct and easy to read they are,
even with no prior exposure to Miranda or functional
programming. Guards (conditions) appear after a
comma at the end of a statement. A statement is per-
formed only when the guard is true. Note x!n is the
same as a subscript, and represents the nth element of x
using 0 origin. Furthermore, #x represents the length of
list, x.

>|l Sort a list of numbers using Mergesort

>msort [] =[]
>msort [a] = [a]
>msort X

> = merg (msort first_half) (msort second_half)
> where

> first_half = [x!nln<-[0..mid]]

> second_half = [x!n I n <- [mid1..max_index]]
> max_index =#x-1

> mid = max_index div 2

> midl =mid + 1

>l Merge two sorted lists into one sorted list.
>merg :: [¥]->[*¥]->[*] |l built-in function
>mergJy=y

>merg (a:x) [] = axx

>merg (a:x) (b:y) = armerg x (by), if a<=b

> = b:merg (a:x) y, otherwise

>/l Given a set as a list of numbers determine all subsets

>subset [] =[0]
>subset (x:xs) = [[x] ++ y | y<- ys] ++ ys
> where ys = subset xs

Miranda is rich with built-in functions and has many
features not presented here. A more detailed study of
Miranda is provided by David Turner[5,6], the author of
Miranda. In addition, Bird and Wadler[1] have written
an excellent textbook on functional programming.
Examples in this textbook are written is a Miranda-like
notation.

3. RESOURCES REQUIRED

There are several pure functional programming lan-
guages that are available. I choose Miranda because of
prior experience with the language. Miranda runs on a
Unix platform and is available to academic institutions
for a modest fee from Research Software Ltd; inquires
can be made to mira-request@ukc.ac.uk. The Miranda
subsystem was placed on one of our existing Unix-
based systems, with sufficient access over the network
to easily accommodate all students in the class. Thus,
no additional hardware was required.

The discrete mathematics class met three times a week
for 50 minutes each. I devoted three 50 minute class
periods (the equivalent of one week) to Miranda.
Miranda was presented during the first lecture of each
week for three consecutive weeks. This gave students
time between lectures to use Miranda and try out some
of the examples. Miranda was taught primarily by
example. Each lecture was spent going over a two to
three page handout of simple Miranda functions written
by the instructor or examples provided by the Miranda
subsystem. Suggested functions were given for students
to try during the week. All handouts are working
Miranda scripts and were also made available electroni-
cally for the students to copy to their account and work
with. No other Miranda handouts were necessary since
Miranda comes with a 92 page on-line manual. The
students were not expected to read the manual, but use it
for help when needed. In addition, a one-time five hour
lab period was set aside to assist students who were not
familiar with Unix. Students could come and go as
their schedule permitted. Most students who came
stayed 45 minutes to an hour. Instruction was given,
along with handouts on simple Unix and vi commands.
The Miranda subsystem was also explained and sample
exercises were given. Instruction was primarily one on
one.

Any instructor can teach an introduction to functional
programming at the level presented in this course. Even
an instructor totally unfamiliar with functional pro-
gramming can easily learn enough in a week or so to
present a simple introduction to the topic. To aid in this
process, all Miranda programs, handouts, assignments
and solutions that I have written are available upon
request via electronic mail to any interested instructor.

4. PROGRAMMING ASSIGNMENTS

Programming Assignment I is given in Appendix Ias a
Miranda script. Students electronically copied the as-
signment to their account and wrote the necessary func-
tions. Note statements beginning with > are executable
statements. All other statements are comments. Com-
ments are also indicated by Il. Students mailed their
completed programs electronically to the instructor
where it was subjected to a test script. The assignment
was given after all of the Miranda lectures were com-
pleted. Since Miranda was started early in the course,
plenty of time was available to do the assignment.
Students were given six weeks to complete the assign-
ment, approximately three times longer than they
needed. This allowed extra time for any student who
needed to catch up on Unix, vi, or was having difficulty
in understanding the concepts of functional program-
ming.

Hvorecky [4] poses an interesting mathematical prob-
lem which is the subject of Programming Assignment
11. Given a natural number N. Split N to its digits and
compute the sum of their squares. Take the result and
split it to its digits and compute the sum of their squares
again. Repeat the procedure until you get 1 or 4. It
turns out that after some time the sequence degenerates
to either 1, 1, 1, ... or 4, 16, 37, 58, 89, 145, 42, 20, 4, ...
A variation to this problem is to find the smallest N
generating the sequence containing L numbers before 1
or 4, (for L <= 15). A Miranda solution to this problem
is given in Appendix II. Notice from the solution that
this problem is more challenging, using more of the
power of Miranda and some of its built-in functions.
Students should compare this solution with a program
they might write in C to do the same thing. This prob-
lem was not assigned, but was given to students who
were interested in pursuing functional programming in
more depth. The problem, however, is an interesting
exercise for a discrete mathematics class to study.

5. RESULTS

A survey was taken among the students to get their
views on introducing functional programming in the
discrete mathematics course. The survey was given
after the assignment was graded and returned. Re-
sponses were anonymous. Results are presented in
Table I. The computer majors were divided into two

groups in the survey. CS represents majors in computer
science, a CSAB accredited degree program. CIS
majors (Computer Information Systems) take the same
computer courses as CS majors, but less mathematics
and more business courses. The third group were
mathematics majors. There were 13 CS students, 9 CIS
students and 10 Math students responding to the survey.

The CIS and Math students for the most part were
unfamiliar with Unix and vi and thought a little more
instruction should have been given. In the future I
intend to offer additional outside labs; perhaps two or
three instead of one. Everyone thought enough time
was given to do the assignment, and the assignment was
at the right level of difficulty. Generally, all students
found exposure to Miranda to be a fun experience, and
helpful in understanding the concepts of functional
programming. Finally, the general opinion by all stu-
dents endorsed the idea of continuing to introduce func-
tional programming in the discrete mathematics course.
CS students found the exposure to functional program-
ming to be an insight they had never experienced before
and enthusiastically recommended an introduction to
functional programming be a permanent part of the
course,

6. CONCLUSIONS

I believe the concepts of functional programming are
very important and should be a part of any computer
science or mathematics degree program. At our univer-
sity, mathematics students are not exposed at all to
functional programming except in this course. All CS
and CIS students are required to take a sophomore level
language concepts course, but functional languages are
not emphasized, and in some cases not presented. (I do
not consider Lisp a suitable language for learning the
concepts of functional programming). Combining an
introduction to functional programming with discrete
mathematics guarantees some exposure to all majors.
These concepts are used in later courses. For example, I
have occasionally used Miranda as a specification
language to describe an algorithm or outline a proof in
graduate and undergraduate data structures and algo-
rithms courses. Functional programming can be a handy
tool for mathematics majors in future courses as well. I
believe that functional programming should be intro-
duced in high school mathematics and computer courses
along with the traditional procedural languages. Expos-

ing mathematics education students to functional pro-
gramming is the primary way to accomplish this.

The introduction to functional programming in discrete
mathematics is not intended to replace a semester
course on the topic. However, many computer science
departments do not offer a semester course on function-
al programming. Indeed, in many cases, the topic is
totally absent from the discipline. Discrete mathematics
provides an excellent opportunity to introduce the topic.
Functional programming and discrete mathematics are a
natural combination. Sets, relations, mathematical
induction, counting methods, permutations and combi-
nations, logic, and some aspects of graph theory are
naturally expressed using a functional language. The
students indicated this was an excellent experience.
Introducing concepts of functional programming arose
from an initial need to assign programs to students who
have had little or no prior programming experience.
Introducing functional programming concepts in dis-
crete mathematics was very successful in practice and I
am extremely pleased with the results. In fact, I believe
this is an excellent idea even if all students are computer
science majors and have significant programming
experience. I believe exposure to the concepts of func-
tional programming is an essential part of computer
science and mathematics degree programs. One week
of lectures and a small monetary investment is all that is
required. I encourage professors to introduce functional
programming in their discrete mathematics courses, or
other appropriate courses if students have no other
exposure to the topic.

REFERENCES

[1] Bird, R. and Wadler, P. Introduction to Functional
Programming, Prentice Hall, 1988.

[2] Burton, F. Warren and Yang, Hsi-Kai. "Manipulat-
ing Multilinked Data Structures in a Pure Functional
Language", Software Practice and Experience, vol.
20 (11), pp. 1167-1185, November, 1990.

[3] Hughes, J. "Why Functional Programming Matters",
The Computer Journal, vol. 32, no. 2, pp. 98-107,
1989,

[4] Hvorecky, Jozef. "On a Connection Between Pro-
gramming and Mathematics", SIGCSE BULLETIN,

vol. 22, no. 4, pp. 53-54, December, 1990.

[5] Turner, David. "An Overview of Miranda", SIG
PLAN Notices, pp. 158-166, December, 1986.

[6] Turner, David. "Miranda: a Non-strict Functiona
Language with Polymorphic Types", Functiona
Programming Languages and Computer Architec
tures, Springer-Verlag, Lecture Notes in Compute:
Science, vol. 201, 1985.

Appendix I
Programming Assignment I

>l pgml.m

DIRECTIONS: Complete the following program to imple
ment SETS as ordered (sorted) lists with no repeated values
You are to write the following set operations as functions it
Miranda. You MUST use the same function names that I hav
given below. Write Miranda functions called remove_dup
mem, add_elem, del_elem, subset, psubset, diff, sym_diff
union, and inter. EDIT THIS FILE AND IMPLEMENT THI
FOLLOWING FUNCTIONS:

remove_dup :: set -> set
This function is given an ordered list (perhaps with
duplicates) and removes all duplicates
mem :: num -> set -> bool
This function determines if an element is in a set
add_elem :: num -> set -> set
This function adds the element to a given set
(be sure to check for a duplicate)
del_elem :: num -> set -> set
This function removes the element from a set
subset :: set -> set -> bool
This function determines if the first set is a subset
of the second
psubset :: set -> set -> bool
This function determines if the first set is a proper
subset of the second
diff :: set -> set -> set
This function determines the set difference between
two sets the first set - the second set.
sym_diff :: set -> set -> set
This function determines the symmetric difference
between two sets
union :: set -> set -> set
This function determines the union of two sets

inter :: set -> set -> set

This function determines the intersection of two sets

>set == [num)] |l a set is a list of num

Appendix IT
Miranda Solution to Programming Assignment II
>l split_num.m
>Il Miranda solution to the problem posed in [4]

>digits :: num -> [num]
>digits 0 =[]
>digits x = digits (x div 10) ++ [x mod 10]

>sqr i num -> num
>sqr X = x*x

>l ssd calculates the sum of the squares of all of the
>l digits of an integer.
>ssd :: num -> num

>ssd x = sum(map sqr (digits x))

>|l iterate is a Miranda function. iterate f x returns the
>l infinite list [x, f x, f(f x), ...]

>l iterate f x = x:iterate f(f x)

>it_ssd :: num -> [num]

>it_ssd x = iterate ssd X

>notl_4 :: num -> bool
>notl_4 x = ~((x=4)V(x=1))

>|| takewhile is a Miranda function. takewhile applied to a
>|l predicate and a list, takes elements from the front of the
>l list while the predicate is satisfied.

>|l takewhile f [] =[]

>|l takewhile f (a:x) = a:takewhile fx, iffa

>l =[], otherwise

>result :: num -> [num]

>result x = takewhile notl_4 (it_ssd x)

>/l note result does not include the trailing 1 or 4 in the list

>len :: num -> num

>len x = #result x

>|l small a will determine the smallest natural number, n,
>l such that the length of the generated sequence forn
>ll (ie., result n) is a.

>small :: num -> num

>small a = 1 + #(takewhile p (map len [1..]))

> where p x = ~(x=a)

>table :: num -> [num]

>table limit = map small [1..1imit]

>l table 15 is [2,11,23,19,7,29,16,5,8,9,3,36,6,88,269]
>l This is identical to the solution presented in [4]

Survey Questlons

Student Population

cs CIs MATH

1. I was familiar with the Unix system before
entering this class. 1.9 4.1 4.4

2. I was familiar with the vi editor before
entering this class. 2.3 4.2 4.5

Enough classroom instruction was given
in Miranda in order to do the assignment. 2.2 3.2 2.9

Enough time was give to do the Miranda

Table I
Functional Language Survey
in Discrete Mathematics 3.
Key: 1. Strongly Agree . :
assignment.
2. Somewhat Agree
3. No Opinon 5.

4. Somewhat Disagree

The Miranda Assignment was at the right
level of difficulty. 1.5 2.0 2.5

5. Strongly Disagree 6.

I found programming in Miranda to be fun
after I got into it. 1.2 2.1 2.3

7. The Miranda Assignment was very helpful in
learning more about functional languages. 1.3 2.2 2.4

8. I recommend that Miranda be continued as part
of the course the next time it is taught. 1.3 2.4 2.4

