GATutor: A Graphical Tutorial System for
Genetic Algorithms”

Charles Prince
Roger L. Wainwright
Dale A. Schoenefeld

Travis Tull

Department of Mathematical and Computer Sciences
The University of Tulsa
{ prince,rogerw,dschoen,ttull }@euler.mcs.utulsa.edu

ABSTRACT

In this paper we discuss the design and implementation of
GATutor, a graphical tutorial system for genetic algorithms
(GA). The X Window/Motif system provides powerful
tools for the development of a user interface with a familiar
feel and look. We implemented the Traveling Salesman
Problem (TSP) and the Set Covering Problem (SCP) as two
example GA problems in the tutorial. The TSP problem
uses an order-based chromosome representation (permuta-
tion of n objects), while the SCP uses bit strings. The user
has numerous buttons to select the GA parameters. These
include (a) type of initial population: random or from a file,
(b) mode: steady-state or generational. (c) population size,
(d) maximum number of generations or trials, (¢) genera-
tion gap, (f) selection mode. (g) selection bias, (h) selection
of the crossover operation from a choice of several possi-
bilities, (i) mutation method. (j) mutation rate, (k) replace-
ment method, (1), elitism, etc. The user has the ability to
do a step by step execution or to do a continuous run. The
screen layout provides visual representation of the chromo-
somes in the population with the ability to scroll. This
gives the user the option of varying one or two GA parame-
ters to visually see the effect on the algorithm. One of
most important features of this tutorial is the set of help
screens that explain, with examples, all of the options for
each of the GA parameters. This package has already been
very useful for teaching the fundamental features of GAs in
many different courses, and it has been very valuable in our
GA research projects.

* Research supported by OCAST Grants AR2-004 and
ARQO-038 and Sun Microsystems Inc.

Permission 10 copy without fee afl or part of this material is
granted provided that the copies sre not made or distributed for
direct commarcis! advantege, the ACM copyright notice and the
tide of the publicetion and Its dste sppear, and notice is given
that copying Is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
end/or specific permission,

SIGSCE 94- 384, Phoenix, Asizona,USA

© 1994 ACM 0-89791-646-8/940003..$3.50

1. GENETIC ALGORITHMS

Genetic algorithms search through the solution space by
emulating biological selection and reproduction. Each new
generation is created by a biased reproduction, the more
"fit" members of the population have a better chance of
reproduction. The parameters of the model to be optimized
are encoded into a finite length string, usually a string of
bits or a string of integers. Each parameter is represented
by a portion of the string. The string is called a chromo-
some, and each bit (integer) is called a gene. Each chro-
mosome is given a measure of "goodness” by the fitness
function. The fitness of a chromosome determines its abili-
ty to survive and reproduce offspring. The "least fit" or
weakest chromosomes of the population are displaced by
more fit chromosomes. The fitness function drives the
population toward better solutions.

Genetic algorithms use probabilistic rules to evolve a
population from one generation to the next. The transition
rules from one generation to the next are called genetic
recombination operators. These include reproduction,
selection of the more "fit" chromosomes; crossover, where
the genetic material of two chromosomes are exchanged in
some manner; and mutation, where, infrequently a random
gene in a chromosome is altered. Genetic algorithms retain
information from one generation to the next. This informa-
tion is used to prune the search space and generate plausi-
ble solutions within the specified constraints.

Genetic Algorithms have been applied to a wide variety of
problems. These include facility scheduling, production
and job scheduling, circuit board layout design, communi-
cation network design, keyboard layout, missile control,
missile evasion, gas pipeline control, pole balancing,
machine meaning, designing neural networks, classifier
systems, robotics, signal processing and filter design,

SIGCSE BULLETIN Vol. 26,
No. 1, March, 1994, pp. 203-207

image processing, and combinatorial optimization such as
TSP, bin packing, set covering. graph bisection, routing,
package placement. For the interested reader, Davis,
Goldberg, and Rawling provide an excellent in depth study
of genetic algorithms [2.4.9].

2. GATutor MOTIVATION

Studying and developing genetic algorithms for solving
combinatorial optimization problems is one of the major
research areas in our department. As a result, we de-
veloped our own genetic algorithm package: LibGA [1].
LibGA provides a user-friendly workbench for order-based
genetic algorithm research. LibGA is a collection of rou-
tines written in the C programming language on a Unix
platform. It includes arich set of genetic operators for
reproduction, crossover and mutation. Routines are pro-
vided which implement both generational and steady-state
genetic algorithms using the genetic operators, allowing
researchers to compare the two approaches. Other features
of LibGA include elitism, generation gap, and the ability to
implement a dynamic generation gap. Other routines are
provided for initialization, reading the configuration file
and generating reports.

In addition we also developed a parallel genetic algorithm
package, HYPERGEN [5]. HYPERGEN is a distributed
genetic algorithm developed for a hypercube. HYPER-
GEN distributes the initial population evenly among the
processors. Each processor (island) executes a sequential
GA on its subpopulation, performing crossover and muta-
tion, HYPERGEN is a modular collection of routines for
generating the initial population, and designating the
evaluation function. HYPERGEN also provides routines
for selection (based on a bias function), reproduction,
mutation, migration interval, migration rate and summary
statistics. The sequential GA on each processor and the
periodic migration of genetic material between processors
is performed automatically for the user.

In several of our undergraduate courses such as Data Struc-
tures, Analysis of Algorithms, and Discrete Mathematics,
the topic of genetic algorithms is presented to some extent.
We believe techniques such as genetic algorithms and
simulated annealing for solving combinatorial optimization
problems deserve attention, especially in undergraduate
courses just as much as more traditional algorithmic tech-
niques such as dynamic programming, branch and bound
and backtracking. In the undergraduate courses, GAs are
presented in just one or two lectures, just to give an intro-
duction. In graduate courses, the topic may be presented
over several lectures and covered in more detail. The
authors attempted to locate a good source for an overview
for GAs, but could not locate anything. We found our-
selves trying to generate all of the introductory material (in
text form) from numerous sources. This proved to be very

time consuming and difficult. It was also not a very effec-
tive learning tool for the students.

Other educators have had recent success in developing
graphical tutorials for various disciplines. Lim and Hunter
[7] developed a graphical database design tool, DBTool,
for an introductory database course. Schweitzer [11]
developed interactive visualization tools for a computer
graphics course. Kurtz et al. [6] developed a tutoring
system for denotational semantics. Newsome and Pancake
[8] developed a graphical computer simulator for systems
programming courses, and Fritz [3] developed hypercard
applications for teaching information systems. Therefore,
we elected to develop a graphical tutorial system for genet-
ic algorithms, GATutor. The authors are not aware of any
other graphical genetic algorithm tutorial package.

GATutor was designed to assist in the instruction of the
foundations and principles of genetic algorithms. Specifi-
cally, GATutor is: (1) Designed to be used by anyone after
a typical introduction lecture on genetic algorithms in some
course. Note the lecture may not necessarily include any
instruction on GATutor at all, just fundamental terms,
concepts and definitions. (2) Designed for a general audi-
ence, not just computer science students. Thus, no pro-
gramming is required and very few computer skills are
required by the user. (3) Portable and easy to install.
GATutor was developed in C under X Windows/Motif. (4)
Modular enough to easily be able to add new features and
options to the package by different people over several
years. (5) Comprehensive, with a full set of help menus to
explain, with examples, all of the numerous GA terms,
definitions, operators and parameters. (6) A self contained
package where students can visually see the effect of
executing a genetic algorithm. (7) An environment where
students can be creative and investigate what happens when
different GA parameters are tried in various combinations.
This "research” type of setting is extremely helpful in de-
veloping early research skills in undergraduates.

GATutor can be used for several different purposes. The
primary purpose for GATutor is to educate our students in
the area of genetic algorithms. GATutor helps develop the
skill and understanding of genetic algorithms for those
undergraduate and graduate students interested in either
reading more about GAs or developing some insight into
their behavior. This package is also very helpful for our
seniors and first year graduate students who are interested
in doing research in genetic algorithms. This package is
also very helpful for students in other disciplines who are
applying GAs in their research work. In our university,
students in electrical engineering, petroleum engineering,
geosciences and business are currently using GAs in
ongoing research projects. Added to HYPERGEN and
LibGA, GATutor completes our trio of in-house developed
GA software packages for education and research in GAs.

A secondary, but very important, use for GATutor is to
educate individuals who are not typical university students.
For example, each summer the university conducts
summer academies for middle school and high school
students. The students are divided into small groups of
three or four students and assigned a simple research
project. When the authors were involved in this program,
our students used a GA package to work on the traveling
salesman problem. The students also prepared a short
written and oral report. Unfortunately GATutor was not
available at that time, but will prove very useful for future
summer academies. The authors are also involved with
summer institutes for mathematics and science high school
teachers. For the past two summers we conducted a dis-
crete mathematics institute for mathematics teachers of
grades 7-12. We devoted one lecture to GAs in an attempt
to show new techniques for solving problems. They were
absolutely fascinated by the topic. GATutor was not fin-
ished in time for our last institute, but undoubtedly will
prove very "entertaining” in future teacher institutes. This
also opens the door for invitations to high school class-
rooms to talk to students about computer science and
mathematics. One final and important use for GATutor is
to demonstrate GA techniques to visiting students from
local middle and high schools touring our university and
department. This is an excellent demonstration package.
In short, the summer academies for students, summer insti-
tutes for mathematics and science teachers, along with the
visitations from local schools are extremely effective re-
cruiting tools for our future students.

3. AN OVERVIEW OF GATutor
3.1 TSP AND SET COVERING PROBLEMS

Given a set of n points in a plane corresponding to the
location of n cities, find the minimum distance closed path
that visits each city exactly once. This is called the Travel-
ing Salesman Problem (TSP). In GATutor it is assumed
that each city is directly connected to every other city by
Euclidian distance. In the Traveling Salesman Problem a
chromosome is simply a permutation of the numbers 1..n
representing the sequence in which the cities are visited.
Problems that can be represented in a chromosome as a
permutation of n integers are called order based problems.

The Set Covering Problem (SCP) problem is the problem
of finding the minimum number of columns in a Boolean
matrix such that all rows of the Boolean matrix are "cov-
ered” by at least one element from some column, and the
sum of the costs associated with the covering columns is
optimal (minimum cost in our case). A Boolean matrix is a
rectangular matrix of zeros and ones. A row is covered if it
contains a one in any of the selected columns. For a matrix
with n columns, the number of combinations to try is 2",
since each element of the power set is a possible solution.

Consider Figure 1 which shows an example Boolean matrix
with m =7 rows and n = 8 columns. Columns 2, 3,4 and 5
form a cover with a cost of 19; columns 1, 2, 5 and 8 also
form a covering with a cost of 23. The optimal cost is 10
formed by columns 4, 5, and 7.

Given a SCP problem with m rows and n columns, a
chromosome defining a possible covering is depicted as a
bit string of length n. The ith bit of the chromosome corre-
sponds to the ith column of the Boolean matrix represent-
ing the problem. A one bit means the column is included
in the covering, and a zero bit means the column is not
included in the covering. There are obviously 2" possible
chromosomes. A feasible solution is defined as any cover-
ing of the rows of the Boolean matrix. For example, in
Figure 1, the bit strings (01111000), (11001001), and
(11111111) are feasible solutions. An infeasible solution is
represented by a bit string that does not define a covering,
such as (00100100), (11010100), (10101011), and
(00000000). Hence, the optimal solution is a feasible solu-
tion with the minimum cost. Further discussion of GAs
applied to the SCP problem can be found in [10].

GATutor features genetic algorithm implementations of
these two classic problems, TSP and SCP. These problems
are easy to understand and represent the two most common
chromosome representations of problems, permutation of
integers and bit strings.

3.2 USER INTERFACE

The initial screen and main window for GATutor gives the
user all of the options required to execute a genetic algo-
rithm (see Figure 2). The screen is divided into four parts,
Problem Parameters, GA Parameters, GATutor
Commands and two Scroll Windows at the bottom of the
screen. In the Problem Parameters, the user may select
the Problem: TSP or SCP, the Size of the problem, and the
type of Data. In this case, the user has selected a 10 city
TSP problem with user-built data. When user-built data is
selected, another screen appears where a point and click
method is used by the user to place points anywhere in the
screen. In this case the final number of points specified by
the user becomes the Size of the problem.

There are numerous GA parameters that the user may
specify. All of these options have default values. In Figure
2, this user has specified that the Initial Population is to be
generated randomly. The Mode is generational. The other
option is steady-state. The Pool Size is set at 20, and the
Number of Generations is set at -1. A positive value will
cause the GA to terminate after that number of generations
(or trials for steady-state mode). A negative value means
the GA will continue to run forever. In this case, the tuto-
rial will be terminated by using one of the GATutor
Commands. In the example shown in Figure 2, the

Generation Gap is not used. The Selection Method is
roulette. Other selection options are uniform random and
rank biased. The Selection Bias is 1.8. The range is from
1.0to 2.0. The Crossover Method is Orderl. All of the
options are user selectable from menus. In addition, all
options for all parameters have help screens that serve as a
complete tutorial system. In Figure 2 the Crossover Rate
is set to 1.0. The Mutation Method is swap. Other muta-
tion options include simple inversion and simple random.
The Mutation Rate is set to zero (off) in this case, and the
population pool Replacement Method is append. Other
replacement options include first weaker, by rank and
weakest. Finally, Elitism is on and the Random Number
Generator Seed is 1.

The GATutor Commands allow the user to either Srep
through the GA one generation (or trial) at a time, Run
continuously, Reset the problem, or Quit the tutorial. Two
graphical scroll bars are provided at the bottom of the
screen depicting the population pool at any given moment.
This is shown as a permutation list (TSP) or list of bit
strings (SCP) in the left window, and a corresponding
graphical display in the right window for each chromo-
some. The right window illustrates the current population
in "row major order”. Both windows scroll vertically and
horizontally for a complete view of the entire population.

GATutor is a viable tool in terms of its functionality and
availability to aid students in learning about genetic algo-
rithms in many different courses at various levels. There
are numerous uses for the package. We have found that
GATutor is very easy to use; students enjoy using it, and
they seem to learn extensively on their own. Several addi-
tions and options are planned for future enhancements of
GATutor. For example, the architecture of GATutor will
make it convenient to provide visualizations for problems
other than the TSP and SCP problems. Thus, in addition to
being a useful educational tool, GATutor is also an invalu-
able research tool. Finally, GATutor is portable and easy
to install and is available at no cost by sending email to
rogerw(@penguin.mcs.utulsa.edu.

ACKNOWLEDGEMENTS

This research has been supported by OCAST Grants AR2-
004 and ARO-038. The authors wish to acknowledge the
support of Sun Microsystems Inc.

REFERENCES

[11 A.L. Corcoran and R.L. Wainwright, "LibGA: A User-
friendly Workbench for Order-based Genetic Algorithm
Research", Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing, pp. 111-118,
1993, ACM Press.

(2]

(8]

[4]

(€]

8]

[0

(10]

(1]

L. Davis, ed., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

J.M. Fritz, "Hypercard Applications for Teaching
Information Systems”, Proceedings of the Twenty-
Second Technical Symposium on Computer Science
Education, SIGCSE Bulletin Volume 23, Number 1,
March, 1991, pp. 55-61.

D.E. Goldberg, Genetic Algorithms in Search, Optimi-
zation, and Machine Learning, Addison-Wesley, 1989.

L.R. Knight and R.L. Wainwright, "HYPERGEN: A Dis
tributed Genetic Algorithm on a Hypercube®, Proceed-
ings of the 1992 Scalable High Performance Comput-
ing Conference, SHPCC’92, Williamsburg, Va., April
26-29, 1992.

B.L. Kurtz, R.L. Oliver and E.M. Collins, "The Design,
Implementation, and Use of DSTutor: A Tutorial
System for Denotational Semantics”, Proceedings of
the Twenty-Second Technical Symposium on Com-
puter Science Education, SIGCSE Bulletin Volume 23,
Number 1, March, 1991, pp. 169-177.

B.L. Lim and R. Hunter, "DBTool: A Graphical Data-
base Design Tool for an Introductory Database
Course", Proceedings of the Twenty-Third Technical
Symposium on Computer Science Education, SIGCSE
Bulletin Volume 24, Number 1, March, 1992, pp. 24-
27.

M. Newsome and C.M. Pancake, "A Graphical
Computer Simulator for Systems Programming
Courses", Proceedings of the Twenty-Third Technical
Symposium on Computer Science Education, SIGCSE
Bulletin Volume 24, Number 1, March, 1992, pp. 157-
162.

G. Rawling, ed., Foundations of Genetic Algorithms,
Morgan Kaufmann Publishers, 1991.

D.A. Sekharan and R.L. Wainwright, "Manipulating
Subpopulations of Feasible and Infeasible Solutions in
Genetic Algorithms", Proceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing, pp.
118-125, 1993, ACM Press.

D. Schweitzer, "Designing Interactive Visualization
Tools for the Graphics Classroom”, Proceedings of the
Twenty-Third Technical Symposium on Computer
Science Education, SIGCSE Bulletin Volume 24,
Number 1, March, 1992, pp. 299-303.

Rows Columns

F 1221345161718
1 B ZEREEE IR
2 o|j1j1]0(0]1}|1}]0
3 00|00 1110|111
4 1{1|]1]0}1]0{01}1
5 oOj(jojojrj1rj1o0f14o0
6 o(o(1jof1y704j01}1
7 0 11 04100 010
Cost 6417271315 161218

Figure 1: Example SCP Representation as a Boolean Matrix

P 55

@nmanOwaN
4]

EY - e

-

liomnn

Figure 2: GATutor Primary Window

