Annals of Operations Research 86(1999)161-177 16]

Analysis of fault location in a network

Cory J. Hoelting, Dale A. Schoenefeld and Roger L. Wainwright

Department of Mathematical and Computer Sciences, The University of Tulsa,
600 South College Avenue, Tulsa, OK 74104-3189, USA

E-mail: schoend @utulsa.edu

We review and analyze a formal problem of fault location in point-to-point telecom-
munication networks which are modeled as undirected graphs. For a network with no bridge
edges, we present a technique for constructing a tour that is able to locate a single fault. We
also develop theory that provides the necessary and sufficient conditions for locating and
detecting a single fault.

Keywords: fault location, telecommunication networks, graph theory, complexity theory,
heuristic techniques

1. Introduction

Fault location is an important aspect of network management in which a network
manager tries to determine the location of a fault in a network, if one exists. If no faul
exists in the network, the network manager should report that the network is function-
ing properly. Recently, many problems related to network management have been
formally stated and partially solved [1,4,7,8,10,11].

We model a network as an undirected graph G(V, E) with a set of nodes V, which
represents the active elements of the network, and a set of edges E, which represents
the passive elements interconnecting the active elements. An active element has the
ability to report its status and to receive information about the status of other active
elements. Some examples of active elements are hosts, bridges and routers. Passive
components, such as network cables, are those which do not have the ability to send
their own status. One of the active elements is designated as the network manager. A
fault in a network corresponds to the failure of a node or an edge in our model. Paul
and Miller present two basic approaches, along with variations, for solving the fault
location problem [7]. They also analyze the performance of their schemes.

In the incremental multicasting scheme (IMS), which is discussed by Paul and
Miller [7], the network manager uses a set of spanning trees, each rooted at the network

@ TC Raltzer ACY Sceience Pribhlichere

162 C.J. Hoelting et al. / Fault location in a network

manager. The network manager (NM) selects one of these trees. Then, it multicasts a
status request message to all of the nodes at distance i, where i ranges, in turn, from
one to the depth of the spanning tree. For each i, and for each node in the tree at a
depth of i, the network manager can determine from the replies it receives whether a
node is alive or if it is unreachable in the current spanning tree. In the former case, the
NM knows that the node is alive and so are the links along the path in the tree from
the NM to the node in question. However, in the latter case, either the node in question
is down or the last link on the path from the NM to the node is down. In this case, the
NM uses an alternative spanning tree to determine which element is faulty, either the
node or the link. If an undirected graph has no bridge edges and has a single fault
(either at a node or an edge), the IMS from [7], with a suitable collection of spanning
trees, is guaranteed to locate the fault. An edge in a graph is a bridge edge if its removal
disconnects the graph.

In the Investigator Propagation Scheme (IPS) described by Paul and Miller [7],
the NM sends a special message, called an investigator, along a precomputed route
beginning and ending at the NM. At each node in the precomputed route, the investi-
gator instructs the node to collect the status of all incident links and all adjacent nodes
and to report to the NM if any of them are down. As with the IMS technique, the
absence of a reply may indicate a problem with either the link or with the adjacent
node. Again, assuming at most one fault and no bridge edges, Paul and Miller state
that the ambiguity can be resolved [7]. If all replies are received, the investigator
continues to the next node and repeats the process. The precomputed tour is called an
Investigator Tour and to find such a tour, one must solve the Investigator Tour Problem.

Paul and Miller state that the advantage of the IMS is that it has a response time
of O(log, n), where n is the number of nodes in the network. The disadvantage of
the IMS is the amount of network traffic that it generates (see [7] for a detailed
explanation). The IPS generates considerably less network traffic than the IMS. How-
ever, its response time is O(m), where m is the number of nodes in the tour. This value
m is usually close to the number of nodes in the network n. Therefore, the IMS typically
has a better response time than the IPS but at the cost of generating more traffic [7].

With the IPS, Paul and Miller [7] introduced the concept of using an investigator
tour to locate a single fault in a network. Their networks were modeled as undirected
graphs without bridge edges. The nodes in an investigator tour form a vertex cover for
the graph. Using this fact, Paul and Miller discuss how to locate a single fault in the
network. However, in our previous work [4] we discovered that if the tour was not
simple, i.e., if edges were used more than once, then locating a single fault is not
guaranteed. This issue was not discussed by Paul and Miller [7].

Initially, we wanted to show that every graph without bridge edges had an investi-
gator tour that was simple [4]. However, we subsequently found several graphs without
bridge edges that do not have simple investigator tours. Nevertheless, each of our
example graphs has an investigator tour that, although not simple, is able to locate a
single fault. In this research, we expand on the initial work of Paul and Miller. A

C.J. Hoelting et al. / Fault location in a network 163

fundamental result of our work is as follows. Any graph G without bridge edges
contains one or more subgraphs with the following two properties: (1) the subgraph
has no bridge edges, and (2) the nodes of the subgraph are a vertex cover of G. We
show that we can construct a tour in any of these subgraphs that is an investigator tour
of G able to locate a single fault in G. Thus, determining the location of a single fault
is possible in any network without bridge edges.

A second objective of this research is to ensure that a heuristic can find an optimal
or near-optimal fault locating tour in a network without bridge edges. We also develop
a taxonomy of the different types of investigator tours that exist. In addition, the
existence of each of these types of tours in an arbitrary graph is discussed.

2. The Investigator Tour Problem (ITP)

Using the terminology presented by Liu [5], we let G(V, E) be a connected,
undirected graph without self loops and without multiple edges. A path in G from v;
to v, is a sequence of nodes (v;, vj,...,v;), where consecutive nodes are adjacent. A
path is simple if it does not include the same edge twice. A path is elementary if it
does not include the same node twice. A tour is a path for which the terminal node
coincides with the initial node. A rour is simple if it does not include the same edge
twice. A tour is elementary if it does not include the same node twice, i.e., other than
the initial node coinciding with the terminal node. A four in G covers an edge if at
least one of the endpoints of the edge is in the tour. A subset V' of Vis a vertex cover
if each edge in G has at least one of its incident nodes in V” [2]. As noted above, an
edge in a graph is a bridge edge if its removal disconnects the graph.

The Investigator Tour Problem, given a connected, undirected graph G with edge
weights, is to find a minimum length tour that covers each edge of G. Note that such
a tour does not necessarily include every edge and does not necessarily include every
node. All of our research assumes each edge in G has weight equal to one, corre-
sponding to the notion of a “hop” in a telecommunication network, and that G has no
bridge edges. These assumptions do not detract from the complexity of the problem.
The ITP was shown to be NP-hard in [7].

A deterministic heuristic for the ITP was proposed in [7]. The steps of the deter-
ministic heuristic are as follows:

Deterministic heuristic for the ITP

Step 1. Find a vertex cover V’ of G(V, E).

Step 2. Build a new complete graph G'(V’, E’) with edge weights. V” is the set of
nodes in the vertex cover of G (which was computed in step 1). The weight
of any edge, say e’ = (u’, v"), in G’ is the length of the shortest path from u’
tov 1InG.

164 C.J. Hoelting et al. / Fault location in a network

Step 3. Find a near optimal TSP tour of G’. That is, find a near-optimal solution to
the Traveling Salesman Problem (TSP) for the complete graph, G'.

Step 4. Map the TSP tour in G’ to a tour in G by letting each edge e’ of the TSP tour
in G’ expand to the shortest path in G between the corresponding end nodes
of e’.

We illustrate the result of applying each of the above four steps of the deter-
ministic ITP heuristic, as implemented in our research, to the graph G(V, E) presented
in figure 1.

Figure 1. Step 1 of the VCNN heuristic.

Most graphs contain many vertex covers. For example, in figure 1, V' =
{1,2,4, 5} is a vertex cover for G. V' = Vand V' = {2, 3, 4, 5} are two other vertex
covers. In our telecommunications application, it would seem to be advantageous to
find a minimal vertex cover. However, finding a vertex cover of minimum cardinality
is itself NP-complete [2]. The specific heuristic that we use to find a minimal or near-
minimal vertex cover is to repeatedly select a node of highest degree and remove all
of its incident edges. There are vertex cover heuristics that are known to have a con-
stant ratio bound of 2 [2]. Although our heuristic does not have a constant ratio bound
of 2, the degree considerations seem to be advantageous in our context. Application
of our heuristic to figure 1 results in the selection sequence 4, 1, 2, and, then, 5, when
ties are broken by selecting the node with the smaller label. The resulting vertex cover
isV'={1,2,4,5}.

Given that the weight of each edge in G(V, E) is assigned to be 1, the complete
graph G’(V’, E’) that results when the vertex cover V’ is selected to be {1, 2, 4, 5}is
presented in figure 2.

The TSP is a canonical NP-complete problem [3]. We use the classical, deter-
ministic nearest-neighbor heuristic to find a near-optimal solution to the TSP. When
applied to figure 2 with node 1 as the initial node, the nearest-neighbor heuristic
produces the TSP tour given by (1, 2, 4, 5, 1), as illustrated in figure 3.

C.J. Hoelting et al. / Fault location in a network 165

1 1

5 5

Figure 2. Step 2 in the VCNN heuristic. Figure 3. Step 3 in the VCNN heuristic.

1/2\ ’
N
/)

Figure 4. An FD investigator tour found by the VCNN heuristic.

5 6

The TSP tour in G’, illustrated in figure 3, maps, at least for one strategy of tie
breaking, to the investigator tour given by (1,2, 3,4, 5,4, 1) and is illustrated in
figure 4. We refer to the entire four-step deterministic ITP heuristic as simply the
Vertex Cover Nearest-Neighbor technique (VCNN).

Notice, this tour is not a simple tour. Therefore, if node 1 is the NM and a fault
occurs at node 5 or the edge between node 4 and node 5, the investigator will be
unable to determine the exact location of the fault. To illustrate, the investigator will
proceed from node 1 to node 4 via nodes 2 and 3 without difficulty. At this point, the
investigator will not receive a response from node 5. So, the investigator concludes
that either node 5 is down or the link between node 4 and node 5 is down. To determine
the location of the fault, the investigator tour will reverse its direction of travel along
the tour. When it reaches the NM, it will report that a fault exists and continue along
the tour in the reverse direction to determine the exact location of the fault. It will
travel from node 1 to node 4. At this point, the investigator is on the “same” side of
the fault as it was before. Thus, it cannot determine the exact location of the fault.
This ambiecuity is due to the fact that the edge between node 4 and node 5 is used

166 C.J. Hoelting et al. / Fault location in a network

in both directions for the investigator tour. The next section clarifies this notion
and determines exactly what properties an investigator tour must possess to be fault
locating.

3. Edge properties and fault location

In the previous section, an example of an investigator tour that could not locate
every possible fault in a network was presented. After having seen such an example,
a natural question to ask is: which investigator tours are fault locating and which are
not? Our research presented in this section discusses a condition, concerning the use
and reuse of edges in an investigator tour, which classifies all investigator tours as
either fault locating or fault detecting.

All networks considered in this research are assumed to have at most one fault.
The term fault locating tour refers to a tour that can determine the exact location of a
fault, i.e. report which element of the network is down, no matter where the fault
occurs in the network. The term fault detecting tour denotes a tour that recognizes the
presence of any single fault in the network. A fault detecting tour can determine the
exact location of some single faults in the network but not all of them. In the case
when a fault detecting tour cannot determine the location of a fault, it can specify that
the fault occurs at either a specific node or at one edge that is incident to the node. An
example of this was presented in the previous section, where the investigator was
only able to determine that the faulty element was either node 5 or the edge between
node 4 and node 5.

To determine if an investigator tour is fault locating, one must look at each edge
that is used in the investigator tour. If an edge is used only once, it will not cause a
problem during tour reversal. However, if an edge is used more than once in an
investigator tour (as in figure 4), it must be used in a specific way to ensure that the
tour is fault locating for any single fault. For a tour with repeated edges to be fault
locating for any single fault, the first and last uses of all of the repeated edges must be
in the same direction. Note: The first and last uses of a repeated edge are relative to
the starting node of the tour, i.e., the NM. Hence, a node must be selected as the NM
before the tour is constructed.

To see why this is true, consider any repeated edge, say the edge between node
A and node B in some graph. Assume that the first occurrence of this edge in the
investigator tour is in the direction from node A to node B. If a fault occurs either at
node B or at the edge itself, the investigator will be unable to locate the fault when the
fault is first encountered (this is the same situation that was presented in the previous
section). If the last use of the edge between node A and node B is in the opposite
direction as the first use, i.e., from node B to node A, then, since during reversal the
investigator will be traversing the end of the tour in reverse, it will use this edge in the
direction from node A to node B. Thus, the investigator will once again be on the
“same” side of the fault and will be unable to resolve the ambicuity. see ficure 4 with

C.J. Hoelting et al. / Fault location in a network 167

A as node 4 and B as node 5. However, if the last use of the edge from node A to node
B is in the direction from A to B, then reversing direction along the end of the tour will
bring the investigator to node B before node A. Hence, the investigator can determine
if node B is faulty or if the link is faulty. To illustrate, see figure 5, given that node 1
is the NM, node 2 is A, and node 8 is B.

5

Figure 5. An UE investigator tour.

A similar example demonstrates why it is difficult to extend the current frame-
work to the case of multiple faults. If we assume that we are still only able to collect
information about the active elements (the nodes) and not the passive elements (the
edges), then, without any additional conditions upon the type of graph or the location
of the faults in the network, an example can be constructed where the IPS, using an
investigator tour which satisfies the conditions on the reuse of edges, cannot locate all
the faults in the network. For example, consider the graph in figure 5. Now consider
three cases where the network contains two faults: (1) where the first fault occurs at
the edge between node 2 and node 8 and the second fault occurs at node 8, (2) where
the first fault occurs at the edge between node 2 and node 8 and the second fault
occurs at the edge between node 8 and node 7, and (3) where the first fault occurs at
node 8 and the second fault occurs at the edge between node 8 and node 7. Applying
the IPS with the investigator tour in figure 5 will yield the same information for all
three of these cases, i.e., there is no response when the investigator tries to ping node
8 from node 2 and there is no response when the investigator tries to ping node 8 from
node 7 after it reverses its direction along the tour. Therefore, we can conclude that
without further constraints the IPS may not be able to locate multiple faults.

4. Investigator tour taxonomy

From our discussion of edge reuse in the previous section, it is possible to develop
a classification for investigator tours. As was originally stated in [7], the VCNN heu-
ristic is only guaranteed to generate fault detecting tours. However, at times it can

168 C.J. Hoelting et al. / Fault location in a network

generate fault locating tours. This is due to the fact that all fault locating tours are
special cases of fault detecting tours where there are no elements in the network at
which the tour cannot locate a fault. Therefore, the set of all fault locating tours, say
FL, is a proper subset of the set of fault detecting tours, say FD, i.e., FL C FD.

The set of fault locating tours FL contains two types of special cases, one of
which contains the other. The set FL satisfies the property presented in the previous
section; namely, the first and last uses of every repeated edge in the tour occur in the
same direction. The first special case is the set of tours in which the use(s) of all edges
occur in the same direction. This set is denoted as UE, which stands for unidirectional
edges. This set is a proper subset of FL, i.e., UE C FL. The second special case is a
set that contains tours which use edges at most once. Thus, all the tours in this set are
simple tours. This set is identified as SM. Note: SM C UE. A pictorial representation
of this taxonomy is shown in figure 6.

UE

Figure 6. The investigator tour taxonomy.

It is helpful to be able to identify a concrete example with each of the classes
in the taxonomy. An example of a tour, say Ty, that is only fault detecting, i.e.,
T, € FD A T, € FL, is shown in figure 4. A tour, say T, that uses repeated edges in
the same direction, i.e., T, € UE A T, € SM, is presented in figure 5. An illustration
of a tour, say T3, that is simple, i.e., T3 € SM, can be found in figure 7. A tour, say Ty,
is the most general type of fault locating, if Ty € FL A T, € UE. An example of this
type of tour is shown in figure 8. The numbered arrows in figure 8 trace the path of
the tour through the graph. This tour is not a UE tour because there is an edge which
is used in both directions, namely the edge which is used as the second, seventh, and
fourteenth edges in the tour.

Now that the taxonomy and examples for each type of tour in the taxonomy have
been presented, we next address the question of existence of each type of tour in an
arbitrary graph that is connected, undirected, has no bridge edges, and has at most one
fault. Graphs of this type will be referred to as dn-graphs, for data network graphs. A

C.J. Hoelting et al. / Fault location in a network 169

2
1 : 19
\ /
4
/ \
5 —— 6
10
Figure 7. An SM investigator tour. Figure 8. An FL investigator tour.

sufficient condition for a tour to be fault detecting is that the nodes of the tour must
form a vertex cover of the graph. Thus, all dn-graphs have at least one investigator
tour that is fault detecting, say T, i.e., T € FD. On the other end of the spectrum is the
set of simple investigator tours, SM. Not every dn-graph has a simple investigator
tour. An example is the graph shown in figure 5.

Every dn-graph has a tour, say 7, that uses all edges in the same direction, i.e.,
T € UE. The following argument will prove this claim. The first step in this argument
is a theorem from graph theory concerning graphs without bridge edges. We present
the proof of this theorem because it does not appear in the cited reference.

Theorem 1 (Ear Decomposition Theorem) [6, p. 34]. For every connected, undirected
graph G(V, E) without bridge edges, the set V can be partitioned into disjoint sets
E\, E,,...,E;, such that E; is a simple cycle and, for each i, 1 <i <k, E; is a simple
path whose endpoints are nodes that already appear in a previous Ej, j <i, and its
other nodes (if any) have not appeared in previous E;’s. (The path may be a closed
one, in which case it includes only one previous vertex.)

Proof. Since G does not contain a bridge edge, it contains at least one simple cycle.
Let this cycle be E,. If E, = E, then the decomposition is finished. Else, there is at
least one edge incident with £ that is not in the decomposition. Start the first “ear”,
i.e. E,, with this edge. Follow a path that starts with this edge until the path’s last edge
1s incident to a vertex that has another incident edee that is alreadv in the decom-

170 C.J. Hoelting et al. / Fault location in a network

position. Such a path exists, otherwise G contains a bridge edge. Continue adding
“ears” until all the edges have been used. O

The next step in showing that every dn-graph has a tour T in UE is to note that
every graph without bridge edges contains at least one subgraph, without bridge edges
and whose nodes form a vertex cover of the original graph G. The original graph,
itself, is one of these subgraphs. However, in some graphs there exist proper sub-
graphs that cover the original graph and contain no bridge edges. Given one of these
subgraphs, one can build a fault locating investigator in it using an Ear Decomposition.
In the subgraph without bridge edges, select one of the nodes as the NM. Then build
an Ear Decomposition in the subgraph such that the NM is included in the initial
cycle, i.e., NM € E|. Now, start at the NM and traverse E, in one direction. Then,
proceed from the NM, using only edges in E; in the direction that they were used
previously, until the current node is an endpoint of E,. Traverse E,, which is a path.
Now the current node belongs to E,. So, return to the NM, using only edges in E; in
the direction they were used previously. At this point, the tour leaves the NM, using
edges in E, and E, in the direction they were used previously, until it encounters an
endpoint of E;. The path that E; constitutes is traversed, and the tour returns to the
NM using edges in E, and E; in the direction they were used previously. This procedure
continues until all elements of the subgraph have been included in the tour and the
tour has returned to the NM. Thus, all graphs without bridge edges contain an investi-
gator tour T where T € UE. Note: this is a constructive argument, but the result is
generally a long tour. Thus, this constructive argument is not efficient as a heuristic
for finding near-optimal investigator tours. However, it does show that in a subgraph
without bridge edges, whose nodes form a vertex cover of the original graph, there
exists at least one fault locating investigator tour.

5. The GITP

If the constructive argument, from the previous section, were used as a heuristic,
most of the time it would not generate efficient investigator tours. Hence, it would be
advantageous to find another heuristic that could generate efficient investigator tours.
Another property that this heuristic should possess is some guarantee about which
class of the taxonomy the resulting tours will belong to. A reasonable heuristic for the
ITP already exists. It is the VCNN heuristic which was presented earlier [7]. However,
solving the ITP only guarantees that the resulting tour will be a member of FD. A
feasible course of action is to modify the existing heuristic for the ITP to produce
tours that are required to be in other classes of the taxonomy. To provide a theoretical
framework for this modification, a generalized version of the ITP will be presented.
Next, techniques for modifying the heuristic so it can be applied to this new problem
will be discussed.

C.J. Hoelting et al. / Fault location in a network 171

Using the symbol T to represent the set of all tours in a graph, the Generalized
Investigator Tour Problem (GITP) is as follows:

Definition 2 (Generalized Investigator Tour Problem — GITP). Given a connected,
undirected graph G(V, E) and a Boolean function W, € {W|¥ : E x T — {true, false}},
find a minimum length tour T € T, 3T covers E and ¥y(e, T) = true, Ve €T.

Notice, the main difference between the ITP and the GITP is the addition of the
Boolean function ¥, which is applied to an edge and a tour. For each class of our
taxonomy, there is an appropriate choice for this function that forces the solutions of
the problem to be in the corresponding desired class. After defining ¥y, = rrue and
selecting ¥ to be Wpp, the resulting special case of the GITP is the ITP. In fact, this
choice for ¥ allows for a polynomial-time reduction of the TSP to the GITP, which
is similar to the reduction of the TSP to the ITP presented in [7]. Thus, the GITP
where W, = Wgp is NP-hard.

Letting Wy = ¥gpy, where Wey, (e, T) = true iff edge e is used in tour T once, we
obtain the special case of the GITP for which a solution is guaranteed to be in SM.
This special case of the GITP is also NP-hard. A sketch of the reduction of the ITP to
the GITP with ¥, = Wy, is as follows. Given an instance of the ITP (assume the graph
in this problem is denoted by G(V, E)), construct a new graph G" consisting of | V|
copies of G. The weight on each of the edges in each of these copies is the same as it
was on the corresponding edge in G. To complete G, we take each vertex in the first
copy of G and connect it to the corresponding vertices in each of the other |V| -1
copies of G by two paths. Each of these paths consist of two edges and one vertex.
The edges in these paths have weight zero. The reason for adding the |V| copies of G
is that an edge is used at most | V| times in a solution to the ITP, which was generated
by a reasonable algorithm. A reasonable algorithm terminates after all edges have
been covered and the tour has returned to the NM. To see why an edge is used at most
|V| times, consider any heuristic for the ITP. In the worst case, the heuristic will use
a vertex cover of size |V/|. Then it will find | V| paths: one from the first vertex in the
cover to the second, one from the second vertex to the third, and finally, one from the
|V|th vertex back to the first. A reasonable algorithm uses an edge at most once in
each of these paths. Thus, a reasonable algorithm uses an edge no more than |V| times.
The first path of weight zero that was added between corresponding vertices allows
the tour to “jump” to another copy of G if it needs to reuse an edge. If the tour does
not need to use an edge in one or more of the additional copies of G, then the second
path of weight zero allows the tour to come back to the first copy of G after having
visited the additional copy or copies of G and thus covering the same edges in the
additional copy or copies of G that were covered in the first copy. We conclude that an
instance of the GITP on the graph G* with Py = W, is polynomially equivalent to the
original ITP on G. Since the ITP is NP-hard, we conclude that the GITP with ¥ = Wg;,
is NP-hard. An example of this reduction is shown for a graph H, which is a ring of
fonr verticee in fionrecs O and 100

172 C.J. Hoelting et al. / Fault location in a network

Al 1 Bl A2 1 B2
1 1 1 1
1 1
Cl D1 c2 D2
A3 1 B3 Ad 1 B4
1 1 1 1
1 1

C3 D3 Cc4 D4

Figure 9. The | V| copies of H in the ¥, reduction.

A3 Ad

Figure 10. The paths of weight zero for the A; vertices of H * in the ¥, reduction.

Letting ¥, = Wyz, where Wy(e) = true iff edge e is traversed in the same direc-
tion every time it is used in the tour, we obtain the special case of the GITP for which
solutions are guaranteed to be in UE. Next, we will show that this special case of the
GITP is NP-hard. A sketch of the reduction of the ITP to the GITP with ¥, = ¥y i
as follows. Given an instance of the ITP (assume the graph in this problem is denotec
hv (V. E)). construct a new eranh G consisting of two copies of G. Each edge in this

C.J. Hoelting et al. / Fault location in a network 173

part of G™ has the same weight as the corresponding edge in G. To complete G, we
take each vertex in the first copy of G and connect it to the corresponding vertex in
the second copy of G by two paths. Each of these paths consists of two edges and one
vertex. The edges in these paths have weight zero. The reason for the two copies of G
is that each edge in G can be used in at most two directions in a solution to the ITP, i.e.
for endpoint A to endpoint B and vice versa. The paths of weight zero are added for
the same reason they were added in the previous reduction. We conclude than an
instance of the GITP on the graph G~ with ¥, = Wy is polynomially equivalent to the
original ITP on G. Since the ITP is NP-hard, we conclude that the GITP with ¥, = ¥,
is NP-hard.

Finally, letting ¥ = ¥p;, where Wg; (e) = true iff the first and last uses of edge
e in the tour are in the same direction, we obtain a special case of the GITP for which
solutions are guaranteed to be in FL. We have not constructed a reduction to show that
this special case of the GITP is also NP-hard, although we are reasonably sure that it
is, nor have we extensively investigated the properties of tours in FL.

We now discuss techniques for modifying any ITP heuristic so it will produce
solutions to the GITP for any of the four Wj’s presented in the previous paragraph.
For ¥ = ¥;p, no modification is required, because this special case of the GITP is
equivalent to the ITP. For ¥y, the required change is to remove an edge, from the
data structure for G, once it is used in the tour. With this modification, a heuristic may
be unable to find a tour in all graphs. An example of a graph for which a heuristic,
modified in this fashion, will fail is the graph shown in figure 5. For ¥, = ¥z, the
first time an edge is used in the tour it must be changed to a directed edge. However,
when a heuristic makes edges directed after they have been traversed brings up the
question of whether the heuristic will be able to complete the tour, by returning to the
NM, or not? The following theorem answers this question:

Theorem 3 (Completion Theorem). Given a connected, undirected graph G without
bridge edges, and a partial investigator tour where all edges in the tour are only used
in one direction, then 3 a path that completes the tour so that the tour is in UE.

Proof. A constructive proof can be written using techniques similar to those used for
the Ear Decomposition Theorem. For example, the general procedure for taking any
of the three partial tours and creating the corresponding complete tour in figure 11 is
as follows. Given a partially completed cycle (as in case 1 of figure 11), we can always
finish the cycle because the graph does not contain a bridge edge. Given one or more
partially completed “ears” (as in cases 2 and 3 of figure 11), we know the ears can be
completed because the graph has no bridge edges. Hence, we can always continue
constructing the investigator tour, either by completing the initial cycle of an ear
decomposition, by completing an incomplete ear of an ear decomposition, or by
traversing an edge which has already been used in the tour (provided we traverse it in
the <ame direction it wae oricinallv traverced) (|

174 C.J. Hoelting et al. / Fault location in a network

Partial Completed
Case 1 C\ Q
Case 2 Q %
= 5> %

Figure 11. Examples of tour completion.

Thus, a heuristic that uses this technique will always be able to finish the tour.
This is a nice result because it has been shown that such a tour exists in every graph
without bridge edges. We have shown that a simple modification to any heuristic for
the ITP will efficiently produce reasonable tours of this type. For W, , the final step
in the heuristic must check that all of the edges satisfy ¥; . If not, the heuristic must
change its solution using some form of backtracking. Since all heuristics trying to
produce tours in FL must use backtracking, their order will be exponential.

6. Experimental results

Two test suites were used to demonstrate the theory developed in this research.
The first test suite consists of six graphs. These graphs were designed by hand to
ensure that they contained no bridge edges. The 25-node graph from this test suite is
shown in figure 12. This first test suite will be referred to as the set of contrived
graphs from this point on. The results obtained by applying the VCNN to this set of
graphs are shown in table 1. Each graph has two entries. One in the FD column and
the other in the UE column. Each number in table 1 represents the length of the tour
obtained by the VCNN. The tours represented in the FD column are solutions to the
ITP, i.e. they are members of the set FD. Note: since FL, UE, and SM are subsets of
FD, the tours represented in the FD column may also be members of some of these
atheete However thev are onlv enaranteed to be members of FD. The tours repre-

C.J. Hoelting et al. / Fault location in a network 175

N
NS

N

Figure 12. The 25-node graph from the first test suite.

Table 1

Results of the VCNN on a set of contrived graphs.

Number of nodes Length of FD tour Length of UE tour
6 nodes 6 i
12 nodes 9 9
25 nodes 25 28
50 nodes 53 63
100 nodes 110 14
200 nodes 222 281

sented in the UE column are solutions to the GITP, for the Boolean function Wy.
Some of these tours may also be members of SM, but not necessarily.

Since UE C FD, it follows that the length of the optimal tour in FD is less than
or equal to the length of the optimal tour in UE. Even though the tours in table 1 are
not guaranteed to be optimal, this relationship still holds in all cases. Intuitively, this
is true because representative tours from FD will generally be shorter than repre-
sentative tours from UE. However, the difference between the lengths of the two tours
is not outlandish given the more demanding properties that the UE tours are required
to satisfy.

The second test suite consists of three graphs that were randomly generated using
the Combinatorica package [9] in Mathematica [12]. Each of the graphs was generated
with edge probability of 0.2, i.e. each graph contains approximately 20% of the edges
that a complete graph with the same number of nodes contains. The contrived graphs
tanded o he a hit more enaree than the random eranhs Built-in functions of the

176 C.J. Hoelting et al. / Fault location in a network

Table 2

Results of the VCNN on a set of random graphs.

Number of nodes Length of FD tour Length of UE tour
50 nodes 43 44
100 nodes 87 87
200 nodes 187 187

Combinatorica package were used to ensure that the random graphs were connected
and contained no bridge edges.

The results of applying VCNN to the set of random graphs are shown in table 2.
The entries in this table are interpreted in the same manner as those in table 1, i.e. the
tours in the first column are members of FD and the those in the second column are
members of UE. It is interesting to note that the same relationship between the tour
lengths applies for the random graphs as it did for the contrived graphs, i.e. the lengths
of tours in FD are less than or equal to the tours in UE. However, the difference
between the two is smaller than with the contrived graphs.

7. Conclusions and future work

This research has expanded the notion of using investigator tours to locate a
single fault in a network without bridge edges. Specifically, the terms fault locating
and fault detecting were formalized, edge conditions used to classify investigator tours
were stated, a taxonomy of the different types of investigator tours was developed,
and a generalized version of the ITP with its relationship to the types of tours produced
by heuristics was presented.

Two issues that will be addressed in the future are the following. First, a more
complete exposition of the theoretical facets of the set FL—UE. This will include a
discussion about instances when the less restricted tours in FL—UE are shorter than
tours in UE. Second, the use of an extensive empirical study of the expected cost of
using a tour in FL for fault location versus using a pair of tours, one from FD and one
from FL, for fault location to determine which approach is better.

References

[11 A.Bouloutas, G. Hart and M. Schwartz, On the design of observers for failure detection of discrete
event systems, in: Network Management and Control, eds. A. Kershenbaum, M. Malek and M.
Wall, Plenum Press, New York, 1990.

[2] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[3] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Complete-
nece WH Freeman San Francisco 1970

[4]

[5]
[6]
(71
(8]
[9]
[10]

[11]

[12]

C.J. Hoelting et al. / Fault location in a network 177

C.J. Hoelting, D.A. Schoenefeld and R.L. Wainwright, Finding investigator tours in telecom-
munication networks using genetic algorithms, Proceedings of the1996 ACM Symposium on Applied
Computing, ACM Press, 1996, pp. 82-87.

C.L. Liu, Elements of Discrete Mathematics, 2nd ed., McGraw-Hill, 1985.

U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.

S. Paul and R. Miller, Locating faults in a systematic manner in a large heterogeneous network,
Proceedings of INFOCOM 1995.

L. Rouvellou and G. Hart, Topology identification for traffic and configuration management in
dynamic networks, Proceedings of INFOCOM 1992, pp. 2197-2204.

S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with Math-
ematica, Addison-Wesley, Redwood City, CA, 1990,

C. Wang and M. Schwartz, Fault detection with multipleobservers, IEEE/ACM Transactions on
Networking 1(1993)48-55.

C. Wang and M. Schwartz, Fault diagnosis of network connectivity problems by probabilistic
reasoning, in: Proceedings of the 2nd IEEE Network Management and Control Workshop, Sept.,
1993.

S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, Red-
wood Citv CA 1001

