International Journal of Parallel Programming, Vol. 16, No. 3, 1987

Deriving Parallel Computations
from Functional Specifications:
A Seismic Example on a Hypercube

Roger L. Wainwright'

Received July 1987; Revised December 1987

Three algorithms developed for a seismic model illustrate that, when the target
hardware has many processing elements, functional programs can exhibit better
performance than programs developed with conventional techniques. This
stands in contrast to the widely held belief that functional programs necessarily
pay in poor performance for their advantages in conciseness and likelihood of
correctness. Two of the algorithms evolved from an analysis of the seismic
model with the goal of finding parts of the computation that could proceed in
parallel. The first algorithm has a low communication to computation ratio. The
second and third algorithms have higher ratios trading communication time for
computation time. The third algorithm was derived from a presentation of
the input/output relationship of the model expressed as a composition of
mathematical functions. This algorithm exhibited substantially better perfor-
mance than either of the others. The algorithm achieves its good performance
by setting up a producer-consumer pipeline between simultaneously operating
portions of the computation. This pipeline balances computation and inter-
processor communication more effectively than the other two algorithms.

KEY WORDS: Functional specification; data flow; load balancing;
parallelism.

1. INTRODUCTION

Most existing parallel architectures are loosely classified into two groups:
(1) shared memory architecture such as the Alliant, Encore, BBN Butterfly,
and Cray-XMP where a common memory is shared by each processor and
(2) nonshared memory architectures such as hypercubes, tree machines,

! Computer Science Department, The University of Tulsa, Tulsa, Oklahoma 74104.
243

0885-7458/87/0600-0243805.00/0 © 1987 Plenum Publishing Corporation

244 Wainwright

and connection machines where each processor has its own local memory
and data is passed from one processor to another by some sort of intercon-
nection scheme. Hypercubes are multiprocessor arrays''# with elaborate
interconnection features connecting the nodes together. In general, a hyper-
cube parallel computer is a collection of sequential computing nodes joined
to their nearest neighbors in an n-dimensional cube. The nodes are com-
pletely independent machines with their own processor memory, I/O, and
resident copy of the operating system. The Amoco hypercube system,
where this work was supported, is currently an NCUBE/ten system'? with
64 nodes each with half a million bytes of local memory. Each processor is
capable of register to register operations at the rate of half a million
floating point or two million fixed point operations per second. Section 2 of
this paper discusses some fundamental issues concerning program develop-
ment on a hypercube. Sections 3 and 4 describe the seismic model and the
characteristics of the algorithm for this model. In Section S, three algorithm
implementations are presented for this model. Section 6 compares the
performance of the three algorithms and in Section 7 summary and
conclusions are presented.

2. HYPERCUBE PERFORMANCE ISSUES

The two most important considerations affecting the overall parallel
performance of a hypercube are the computational speed of the nodes and
the communication speed between the nodes. The ratio between these two
quantities is the determining factor on how to implement a good parallel
algorithm on a hypercube. A single precision floating point multiply can be
performed on a node in our system at a rate of 0.094 megaflops. This was
determined empirically by performing a single multiply operation within a
loop, then subtracting out the loop overhead. If multiplications occur
between array elements then the additional array reference overhead
reduces the effective rate to 0.075 megaflops. Performing more complicated
arithmetic expressions, such as 15 to 20 multiplication operations in one
assignment statement, resulted in better utilization of register to register
operations. However, this only increased the effective rate by a factor of
two.

Vasicek and Beguelin‘®’ determined that the node interprocessor com-
munication rate is given by the following formula where message-time is
given in clicks (146.28 microseconds per click):

Message-time = 1.70 + (number-of-hops * 1.53)
+ (number-of-bytes * 0.0128) (1)
+ (number-of-hops * number-of-bytes * 0.00876)

A Seismic Example on a Hypercube 245

It turns out that communication costs compared to computational costs
are balanced for long messages and dominated by communication costs for
short messages. For example, to send 40,000 bytes a distance of one hop
takes approximately 0.127seconds using this formula. Performing 10,000
single precision floating point array operations which corresponds to
40,000 bytes at a rate of 0.075 megaflops takes approximately 0.133
seconds. The communication time is approximately the same in this case.
Sending only 40 bytes of data, however, takes approximately 6.0 x 10~*
seconds compared to computational time of 1.33x 10~* seconds for 10
floating point operations. In this case the communication time is
approximately 4.5 times slower. When passing data among nodes it is
generally more efficient to avoid passing extremely small amounts of data.

Consider the following simple problem illustrating this point. Suppose
a single node must multiply two 50,000 element vectors together to form a
single vector. Also suppose an adjacent node (distance one away) is
available to do some of the calculations. How do you partition the work?
One way is to have the first node do all of the work and not use the
adjacent node at all. In this case the calculations take approximately
0.67 seconds. An extreme solution is to send all 100,000 values to the
adjacent node to calculate the products and return 50,000 values. This
takes the same 0.67 seconds to perform the calculations plus an additional
1.89 seconds for communication time for a total of 2.56 seconds. An
optimal solution is somewhere between these extremes. Suppose X bytes
are sent to the adjacent node such that both nodes are kept busy for the
same amount of time performing the calculations. Communication time
must also be taken into consideration. Using formula (1) and 0.075
megaflops, the value for X can be estimated a priori using formula (2) given
as:

1 second
e L G0 S Ut e e NI
(50000 — X/8) flops 0075 * 10° fiops (2a)
28%10-°
(175 153000 X) aicks U222 21D ERONT) (2b)
1 click
1 second
*
+ X/8 flops * 5 575 = 105 fiops =
146.28 * 10-¢
£ (174 15340022 §2) clis ¢ 100 108 meeond) o)

1 click

In this formula, (2a) represents the time in seconds for the original node to
perform its numerical computations (8 bytes represent two operands and

246 Wainwright

thus one arithmetic operation), (2b) represents the time to communicate X
bytes to the adjacent node, (2c) represents the time for the adjacent node
to perform its numerical computations and (2d) represents the time to
communicate X/2 bytes back to the original node. In this case the optimal
value for X is approximately 80,000 bytes. This means that approximately
10,000 of the 50,000 pairs of values to be multiplied should be sent to the
adjacent node yielding a total time of 0.53 seconds. This represents a
speedup of 1.26 using two nodes versus one node. This is a simple example,
but it serves to point out the importance of considering both com-
putational and communication speeds when developing algorithms to run
on a hypercube.

3. DESCRIPTION OF THE SEISMIC MODEL

This paper reports my experiences on implementing several algorithms
for the seismic model shown in Fig. 1. In this model, seismic data has been
collected as a function of time over several seismic lines. Each line is a
collection of numerous seismic traces, where each trace begins on the sur-
face of the earth and proceeds to.depth 4 in the model. The desired results
of the model is a seismic image. The size of the problem depends on the
number of seismic lines and traces to analyze. The input parameters, inter-
mediate calculations and final results for this model are described by:

TRACES

LINES

Fig. 1. Seismic model.

A Seismic Example on a Hypercube 247

Input Parameters:

U(r) is a two dimensional matrix of seismic data collected in the
field as a function of time, t.

G(v, d) represents the geophysical parameters of the model (velocity
and depth profile).
Intermediate Calculations:
T(z) is a one dimensional vector of traversal times calculated
for z=1..d, where d is the depth of the model.
Final Results:

B(z) is a two dimensional matrix of the resultant seismic image
forz=1..d

The functional dependencies between U, G, T, and B are shown in
formula 3. The same information is given in Fig. 2 in the form of a data
flow diagram.

T(1)=f(G)
T(z)=g(T(z-1), z, G) for z=2..d (3)
B(z)=h(U, T(2), z) for z=1..d

Input: U and G Results: B1++ Byg

INPUT

Fig. 2. Data flow diagram.

B28/16/3-5

248

Wainwright

4. CHARACTERISTICS OF THE ALGORITHM

Figure 3 depicts the sequential algorithm for this model. The charac-
teristics. of the algorithm are listed here. These are the same characteristics
presented in formula 3 and Fig. 2.

L.

BLOCK A represents a fixed amount of one time calculations for
the input and preprocessing of U and G.

BLOCKS T and B are executed d times in a loop which does not
depend on the size of the problem to be solved.

BLOCK T is not easily divided into parallel partitions. The
amount of calculations performed in this block is fixed and not
dependent on the size of the problem.

BLOCK B is easily partitioned into separate parallel parts which
can be performed in parallel on several nodes. The amount of
work performed in BLOCK B increases directly as the size of the
problem increases.

BLOCK B depends on the calculations performed in BLOCK T
during each cycle in the loop.

BLOCK T does not depend on the calculations performed in
BLOCK B, but does depend on calculations from BLOCK T in the
previous cycle.

BLOCK A

loop1..d

BLOCK T
BLOCK B

end

Fig. 3. Sequential algorithm in block form.

A Seismic Example on a Hypercube 249

5. ALGORITHM IMPLEMENTATIONS

Three different parallel strategies were developed and implemented for
the generic algorithm previously stated. The strategy for each of the
algorithms is later described and shown in Figs. 4-6. The algorithms are
depicted in general terms ignoring any topological properties of the hyper-
cube.

Algorithm I was designed to minimize the interprocessor com-
munication between nodes. In this algorithm a single dedicated node (node
zero) performs the one time BLOCK A calculations, determines how to
partition the workload for BLOCK B evenly among the available nodes
and passes this information one time to each working node, then quits.
Nodes one through n (called working nodes) work independently of each
other. Each working node redundantly calculates every T BLOCK and for
each T BLOCK calculates only its part of the associated BLOCK B sending
the results back for collection. As expected, this algorithm has a low com-
munication to computation ratio. This algorithm is also called the “X-Y
parallel local T algorithm.” Every node calculates BLOCK T locally. The
calculations for BLOCK B, which are performed horizontally over the Xx-y
plane for a given depth, are done in parallel. See Figs. 1 and 4.

Algorithm II is a classical producer/consumer algorithm. In this
algorithm, node zero performs the one time BLOCK A calculations, par-
titions the workload for each BLOCK B evenly among the available nodes
and passes this information one time to each working node. This is exactly

Fig. 4. Algorithm I: (X-Y) parallel with local T.

250 Wainwright

Fig. 5. Algorithm II: (X-¥) paralle]l with global T.

the same as Algorithm I. However, unlike Algorithm I, node zero continues
to operate. It performs the BLOCK T calculations, sending the results to
every working node. The rate of the production of the BLOCK T results by
node zero is independent of the consumption of the BLOCK T data by the
working nodes. Thus in this algorithm all of the BLOCK T calculations are

COMPUTE
B(2)

Fig. 6. Algorithm III: Z parallel with global T,

A Seismic Example on a Hypercube 251

performed in one node and broadcasted to each of the working nodes
rather than each working node calculating BLOCK T itself. Notice that
each working node still receives all of the BLOCK T calculations. This
algorithm reduces the total amount of calculations required in each
working node in comparison to Algorithm I; however, it increases the
interprocessor communication between nodes. In Algorithm I1, nodes one
through n work independently of each other consuming BLOCK T data,
performing only their portion of BLOCK B calculations, and sending
results back for collection. Algorithm II requires a careful balance between
the production and consumption of the BLOCK T data to optimize perfor-
mance. This algorithm is also called the “X-Y parallel global T algorithm.”
BLOCK T is calculated by one node and the BLOCK B calculations, which
are performed horizontally over the x-y plane for a given depth, are done
in parallel. See Figs. 1 and 5.

Algorithm III is a minor but very effective variation of Algorithm II.
Node zero performs the one time BLOCK A calculations as always and all
of the BLOCK T calculations are performed by node zero as well. This is
the same as Algorithm II. However, in Algorithm IIT unlike the previous
algorithms, BLOCK B work is not partitioned among the working nodes.
Instead each working node receives only a selected few BLOCK T results
(not every BLOCK T as in the previous algorithms) and calculates all of
the associated BLOCK B, not a fraction of the BLOCK B work as in the
previous algorithms. For example, if there are n working nodes, then node
i, i=1,.n, will receive BLOCKT; and calculate all of BLOCK B, for
Jj=i+mn, where m=0,1,2,.. such that j<d. This algorithm like
Algorithm II is a producer/consumer algorithm requiring a delicate balance
between the production and the consumption of BLOCK T data. This
algorithm is also called the “Z-parallel global T algorithm.” BLOCK T is
calculated by one node and the parallel calculations of BLOCK B are
performed vertically across the planes in the Z direction. It would seem
that after a certain point when all working nodes are keeping up with the
production of the T BLOCKs from node zero that adding additional
working nodes would be ineffective. This is indeed the case. Algorithm 111
is the direct result of executing the problem as stated functionally in
Formula 3 and depicted in Fig. 2. Compare the similarity between the flow
of data shown in Fig. 2 and Algorithm III depicted in Fig. 6. In fact I did
not consider this solution until I wrote the generic problem in functional
form. In this case depicting the problem in its functional form yielded
significant insight into the interdependencies within the problem and
suggested an efficient algorithm for solving the problem. It is interesting
that a graph reducing parallel evaluator®” could automatically derive this
computation from a functional program specifying the algorithm.

252 Wainwright

6. ALGORITHM COMPARISONS

All of the algorithms were implemented using from 2 to 64 nodes for
various problem sizes ranging from 8 to 360 units of work. Results are
reported for the case of 360 units of work which corresponds to a medium
to large size problem. In terms of the physical model shown in Fig. 1 this
corresponds to 360 traces over several lines. Due to memory limitations,
360 units of work is the largest possible problem size without using exter-
nal storage. Since 60 nodes evenly divides 360 units of work, using all
64 nodes resulted in insignificant improvement over using 60 nodes.
Therefore, all tables report results for a maximum of 60 working nodes
(61 nodes total including node zero). Tables I, II, and III report the results
of Algorithms I, II, and III respectively.

All three algorithms require a minimum of two nodes; node zero and
at least one working node. Each entry in Tables I, II, and III counts node
zero as one of the nodes. In order to have a basis for comparison, a
separate algorithm was developed to run on a single node. Results from
this algorithm are recorded in each Table in the first entry. Notice that
each algorithm exhibits poor performance while using a small number of
nodes. This is because node zero is an “overhead” node. For example, each
algorithm is approximately 50% efficient using two nodes (one working
node and node zero). When using two nodes each algorithm is basically a
sequential operation. This is the reason why each algorithm initially
exhibits a sharp decline in efficiency and then a rapid rise in efficiency until
the overhead of node zero is compensated for (see Fig. 8).

Table I. Algorithm I: (X-Y) Parallel with Local T

Number of % Time spent Total
nodes in BLOCKT time Speed up Cost Efficiency
1 1.60 11326.80 1.00 11326.8 1.00
2 1.60 1133197 0.99 22663.9 0.49
3 3.15 5762.60 1.96 17287.8 0.65
4 4.05 4488.53 2.52 17954.1 0.63
5 5.36 3384.47 3.34 16922.4 0.67
6 6.56 2768.35 4.09 16610.1 0.68
11 12.28 1479.01 7.66 16269.1 0.69
21 21.69 837.10 13.53 17579.1 0.64
31 29.03 625.48 18.11 19389.9 0.58
41 34.82 521.43 2172 21378.6 0.53
61 43.14 420.88 2691 25673.7 0.44

“ Problem size = 360. All times are in seconds.

A Seismic Example on a Hypercube 253

Table Il. Algorithm Il: (X-Y) Parallel with Global T*

Number of Wait Send Total
nodes BLOCKT BLOCKT time Speed up Cost Efficiency
1 — — 11326.80 1.00 11326.8 1.00
2 0.0 10741.0 11155.52 1.01 22311.1 0.51
3 0.0 5367.0 5579.81 2.03 16739.4 0.67
5 0.0 3002.0 3204.04 353 16020.2 0.71
7 0.0 1962.0 2158.84 5.25 151119 0.75
11 169.0* 1106.0 1300.62 8.71 14306.8 0.79
16 121.3* 680.0 874.23 12.95 13987.7 0.81
21 98.6* 4720 667.13 16.98 14009.7 0.81
31 410.1* 3740 570.85 19.84 17696.4 0.64
33 256.3* 396.0 593.56 18.08 19587.5 0.58
37 310.8* 4470 645.56 17.54 23885.7 047
61 720.3* 751.0 957.69 11.83 58419.1 0.19

2 Problem size = 360. All times are in seconds.

Figures 7 and 8 compare the performance of all three algorithms.
Figure 7 compares the speedup of the algorithms versus the number of
nodes used. Figure 8 compares the efficiency of each algorithm versus the
number of nodes. The data used to produce these figures came from Tables
I, 11, and III with additional sample points.

Table Ill. Algorithm lll: Z-Parallel with Global T¢

Number of Wait Send Total
nodes BLOCKT BLOCKT time Speed up Cost Efficiency
1 — — 11326.80 1.00 11326.8 1.00
2 0.0 10762.0 11143.84 1.02 22287.7 0.51
3 0.0 5198.0 5584.37 203 16753.1 0.67
5 0.0 2440.0 2794.97 4.05 13974.8 0.81
7 0.0 1530.0 1830.11 6.19 12810.7 0.88
11 0.0 802.0 1136.62 9.96 12502.8 0.90
16 0.0 447.0 769.77 14.71 12316.3 0.92
21 0.0 290.0 584.89 19.36 122829 0.92
31 0.0 120.0 398.08 2845 12340.5 091
37 0.0 82.0 34041 33.27 12595.2 0.90
41 10.0 62.0 315.32 3592 12928.1 0.87
52 120 230 255.97 4425 133104 0.85
61 12.0 7.0 239.71 47.25 146223 0.77

“ Problem size = 360. All times are in seconds.

254 Wainwright
Speedup
— &
Legend i
4041[° Algorithm | 0 Algorithm I & Algorithm Il -

0 T T T T T
0 10 20 30 40 50 60
Number of Nodes
Fig. 7. Speedup versus number of nodes.
1 Efficiency

Number of Nodes

Fig. 8. Efficiency versus number of nodes.

0.
0.
0.
\"‘-—.
0.2+ | Legend a
o Algorithm | o Algorithm I~ & Algorithm Il
O T I T I I
0 10 20 30 40 50 60

A Seismic Example on a Hypercube 255

Figures 7 and 8 and Tablel show some of the properties of
Algorithm 1. Some observations concerning Algorithm I include:

1.

Adding more nodes reduces the execution time and increases
speedup (see Figs. 7 and 8).

Increasing the number of nodes reduces the amount of work each
node performs on BLOCK B thus increasing the percent of time
spent in BLOCK T. This greatly reduces the efficiency. In Table I
using 61 nodes, each working node performs 6 units of work, (360
units of work/60 working nodes). The algorithm spent only 43 %
of its time in BLOCKT for a speed up of almost 27 and an
efficiency of 0.44.

The larger the problem size the better Algorithm I performs. The
work performed in BLOCK T is independent of the problem size.
However, the work in BLOCK B increases the percentage of the
work that can be parallelized (BLOCK B) increases.

In Algorithm II node zero generates all of the BLOCK T data sending
the results to each of the working nodes independent of the progress of the
working nodes. If the work load between node zero producing BLOCK T
data and the consumption of BLOCK T data by the working nodes is out
of balance then some interesting results occur (see Table II):

1.

When the Wait BLOCK T values are zero node zero is producing
BLOCK T data faster than the working nodes can consume it. In
other words there was no wait time for BLOCK T data when
nodes 1 through n required it.

Notice the amount of time required by node zero to send
BLOCK T. The amount of time to calculate BLOCK T is fixed.
The communication time for the data varies with number of nodes
used. The results of BLOCK T calculations are always available
(no wait time) in the case of seven nodes or less. This means node
zero is producing BLOCK T data faster than it is being consumed.
In the case of two nodes (one working node), the sending time is
over 10,000 seconds, but when three nodes are used (two working
nodes), it decreases to a little over 5,000. With additional nodes it
becomes even less. This is because the buffer size for queued
messages is fixed. If the limit is reached then the sending node
(node zero in this instance) is temporarily suspended (blocked)
until some of the messages are consumed. Hence nearly all of the
10,000 seconds to send BLOCK T data is due to wait time caused
by the message buffer limit and not actual communication time. As
additional nodes are added to the problem the production and

256 Wainwright

consumption become balanced where the buffer limit is never
reached. Hence after a point this delay does not occur. When more
than seven nodes are used there exists some wait time for the data.
The * entries for wait times for BLOCK T in Table Il indicate
varying wait times (all positive) among the working nodes. An
average value is recorded.

3. In TableII a balance is obtained between the sending and waiting
of BLOCK T results. This occurs at 31 nodes. See Figs. 7 and 8
and note the change that occurs to Algorithm I at 31 nodes.
When the number of nodes used is below the balance point the
delay in sending BLOCK T data is primarily due to buffer limits,
and when the number of nodes used is above the balance point
then the delay in sending BLOCK T data is primarily due to the
increased number of nodes to which data must be sent.

4. The balance point for the sending and receiving of BLOCK T data
is also the point where best (minimal) time was achieved. Unlike
Algorithm I, Algorithm II actually gets worse after a certain point
when additional nodes are added to do the work! See Figs. 7 and
8 and note total time recorded in Table II. The larger the problem,
the higher the balance point, however. When I ran Algorithm II
for problem size of four the balance point occurred using one
working node. In this case the use of additional nodes made the
problem worse. At the other end of the spectrum a problem of size
1000 will have a balance point beyond the available 64 nodes that
we have.

In Algorithm IIl node zero generates all of the BLOCK T data,
sending the results to each of the working nodes independent of the
progress of the working nodes. This is identical to Algorithm II except each
working node performs all of the associated BLOCK B work for each
BLOCK T that it receives. The work load balance between node zero
producing BLOCK T data and the consumption of BLOCK T data by the
working nodes is a critical issue in this algorithm compared to the others.
When a node is sending a message to another node in the NCUBE system
and the input message buffers of the receiving node are full, then the
program in the sending node is temporarily halted or blocked until buffer
space is available for the message to be sent. When the receiving node is
able to receive more messages, then the sending node is awakened and
execution is resumed. I mentioned this earlier as the reason for the
unusually long communication times for sending BLOCK T data in
Table II for Algorithm II.

Unfortunately, there is a side effect to the blocking of a node in the

A Seismic Example on a Hypercube 257

NCUBE hypercube system which can be critical: while a node is suspended
it will not allow any message traffic to go through it! This is a deficiency in
the hypercube system from our point of view. In the case of Algorithm III,
node zero is sending BLOCK T data and also receiving traffic (BLOCK B
results) from the working nodes on the way back to the cube manager for
collection. In the case of small problem sizes this did not cause any
problems. However, for problem size 360 a deadlock occurred in every
instance regardless of the number of nodes used.

There are at least two possible solutions in order to get Algorithm III
to work for large problem sizes. First, allow node zero to initially send a
fixed number of BLOCK T data messages to each working node and then
send additional data only upon request from each working node. This will
ensure that the buffer limit will never be exceeded and thus prevent a
possible deadlock. Second, rather than controlling the buffer limit which
requires additional message handling and coordination, do not allow any
traffic to go through node zero. In our NCUBE system four of the 64 nodes
have a direct connection link to the cube manager. Node zero is one of
these connections, and as a result many of the messages from other work-
ing nodes go through node zero to the cube manager. The second solution
is the one that was implemented. Because of the physical arrangement of
the hypercube it is not possible to actually remove node zero from the
burden of handling traffic from other nodes to the cube manager. By the
convention established for message traffic in the hypercube system, node 63
will never handle any messages from other nodes to the cube manager. As a
result of this simple observation the program normally executed on node
zero was moved to node 63, for example for a cube of size 6. This solved
the hypercube deadlock problems in Algorithm III.

Other noteworthy points concerning Algorithm IIT (see Table III)
include:

1. When the Wait BLOCK T values are zero in Table III “node zero”
is producing BLOCK T data faster than the working nodes can
consume it. That is, there was no wait time for BLOCK T data
when nodes 1 through n required it. However, buffer limits are
exceeded as discussed earlier and, as a result, large send BLOCK T
times are recorded. This is the same as Algorithm IL

2. A balance is obtained between the sending and waiting of
BLOCK T results. This occurs at 61 nodes. When the number of
nodes used is below the balance point the delay in sending
BLOCK T data is primarily due to buffer limits, the same as in
Algorithm II. However, when the number of nodes used is above
the balance point, then the delay in sending BLOCK T data levels

258 Wainwright

off to a constant value unlike Algorithm II. This is because
BLOCK T data goes to only one node, not to all working nodes.
Burton and Huntbach® suggest several things to consider when
deciding when to move some pending process to another processor
in order to improve the balance in workloads and to avoid
communication bottlenecks. Keller and Lin®’ discuss in detail
the factors influencing the choice of granularity of a problem.
Trade-offs include communication overhead and the flexibility of
dynamic load balancing. A future topic of research is to consider
the benfits of dynamic load balancing in this model.

3. The balance point for the sending and receiving of BLOCK T data
is also the point where the CPU time begins to level off. That is,
after a certain point adding additional working nodes will not
alter the execution time. After the balance point has been reached
where the working nodes are keeping up with the production of
BLOCK T data, adding additional nodes will simply ensure idle
time for some nodes. As expected, the larger the problem the
higher the balance point. Unlike Algorithm II, Algorithm IIT does
not get worse with the addition of more working nodes with
respect to CPU time. The efficiency goes down, however.

7. CONCLUSIONS

Three different algorithms arising from a seismic model used in oil
exploration were implemented on a hypercube system (64 nodes). The dif-
ference between the three algorithms is the way in which parallelism is
realized in the seismic model (Fig. 1). Algorithms I and II parallelized
across the x-y plane horizontally. In Algorithm [there is a redundancy
of computation to avoid communication costs and in Algorithm II
there is additional communication, but it is overlapped with compu-
tation. Algorithm III however, parallelizes vertically along the Z axis.
Algorithm IIT was derived from the functional specification of the problem.
Notice the similiarity between Figs. 2 and 6. There are other ways to
partition the seismic model in order to obtain different algorithms. I have
considered only these three at this time.

Algorithm III, derived from the functional specification of the
problem, exhibited faster execution times regardless of the number of nodes
used or the size of the problem. In general, adding additional working
nodes to the problem in Algorithm I decreased the overall execution time.
This leveled off after a certain point. Adding working nodes in Algorithm II
decreased execution time up to a point after which additional nodes

A Seismic Example on a Hypercube 259

increased execution time. Adding working nodes to Algorithm III
decreased execution time up to a point, after which additional nodes had
no effect. The speedup for Algorithms I, 11, and III are respectively 26.91,
11.83, and 47.25 using 61 nodes for a problem size of 360 traces over
several seismic lines. (Algorithm IT exhibited best speedup, 19.84, using
31 nodes). The efficiency of Algorithms I, II, and III are respectively 44 %,
19%, and 77% when using 61 nodes. In each algorithm the efficiency was
approximately 50% using two nodes. This is because the process of using
node zero with only one working node is basically a sequential process.
Using additional working nodes increases the efficiency rapidly up to a
certain point before it begins to decrease again (see Fig. 8). The efficiency
of Algorithm III drops off very slowly as the number of nodes increases.
The efficiency did not drop below 90% until more than 40 nodes were
used. The other algorithms are significantly more inefficient.

Each of the algorithms can be slightly improved. First, several nodes
could be used for a tree structure fan-out of the data messages sent from
node zero to the working nodes. This could reduce some of the com-
munication delays. Secondly, the partitioning of the workload of BLOCK B
in Algorithms I and II could be divided unevenly among the working
nodes. It was observed in problems with a large number of working nodes
that nodes farther from node zero finished their work after nodes closer to
node zero. This difference was sometimes as much as 20% of the total
execution time. This was expected since messages are delayed depending on
the distance a receiving node is from the sending node. An improvement
from 10 to 20% is expected if nodes closer to node zero are given slightly
more work than nodes further away. Of course, the first suggested
improvement will solve some of this.

Comparing Algorithm I versus Algorithm II in Figs. 7 and 8, there is a
point where the lines cross. Thus, under certain conditions Algorithm I
performs better than AlgorithmII in execution time, speedup and
efficiency, and under certain conditions Algorithm Il performs better.
However, my findings show Algorithm III, which was derived from the
functional form of the problem, to be the best algorithm. This algorithm
was not apparent until the functional specification was developed. It was
derived by hand, but could have been derived automatically through graph
reduction processing of the functional program. This algorithm exhibited
superior performance in every instance in execution time, speedup and
efficiency. Furthermore, this was independent of the problem size and the
number of nodes used.

260 Wainwright

ACKNOWLEDGMENTS

The work reported in this paper was supported by Amoco Research
Center, Tulsa, Oklahoma. I am grateful to my colleagues Tony Cox and
Dan Vasicek for their helpful comments. I am also grateful to Rex Page for
his thorough readings of the manuscript, which resulted in numerous
improvements and clarifications. My thanks to the referees, especially
referee E, for their constructive comments. This contributed greatly to the
final form and content of the paper.

REFERENCES

1. S. Lakshivarahan and S. K. Dhall, A New Hierarchy of Hypercube Intefconnection Scheme
for Parallel Computers: Theory and Practice Research Report OU-PPI-TR-86-02, Parallel
Processing Institute University of Oklahoma, Norman, Oklahoma (August 1986).

2. NCUBE Corporation, NCUBE System Manual (1985).

3. W. J. Ouchark, J. A. Davis, S. Lakshivarahan, and S. K. Dhall, Experiences with Intel
Hypercube, Proceedings of the Workshop on Applied Computing, Oklahoma State
University, Stillwater, Oklahoma, October 10-11 (1986).

4. C. L. Seitz, The Cosmic Cube, Commun. ACM 28(1):22-33.

5. D. J. Vasicek and A. Beguelin, Communication Between Nodes of a Hypercube, Second
Conference on Hypercube Multiprocessors, Knoxville, Tennessee (September 1986).

6. D. H. Grit and R. L. Page, Deleting Irrelevant Tasks in an Expression-Oriented
Multiprocessor System, ACM TOPLAS 3(1):49-59 (January 1981).

7. D. H. Grit and R. L. Page, A Multiprocessor Computer System for Parallel Evaluation of
Applicative Programs, J. Digital Systems, Vol. 4, No. 2 (1980).

8. F. W. Burton and M. M. Huntbach, Virtual Tree Machines, IEEE Trans. Compul.
C-33(3):278-280 (March 1984).

9. R. M. Keller and F. C. H. Lin, Simulated Performance of a Reduced-Based Multiprocessor,
IEEE Computer, pp. 70-82 (July 1984).

