Proceedings of the 1986 ACM Fourteenth Annual Computer Science Conference
Cincinnati, Ohio, February 4-6, 1986 ISBN: 0-89791-117-6

PARALLEL MERGE—-SORT ALGORITHMS ON THE HEP

Paul Hartono Singgih, The University of Tulsa
Howard B. Demuth, University of Idaho
Martin T. Hagan, The University of Tulsa
Roger L. Wainwright, The University of Tulsa

ABSTRACT
In this paper we describe four parallel

merge-sort algorithms: (1) Parallel merging; (2)
Bubble/merge; (3) Batcher's odd-even merge; and
(4) Quicksort/merge. In each algorithm we divide
a sequence of numbers of length n into k sub-
sequences of equal length. Using k processors we
sort each subsequence using a serial algorithm,
either Merge-sort, Bubble, Batcher's or
Quicksort. Finally the k sorted subsequences are
merged in parallel using a parallel implemen-
tation of the tree sort. Each algorithm was run
on the Denelcor HEP computer. The HEP is the
first commercially available MIMD multiprocessor
system. Each algorithm was executed using k = 1,
2, 4, 8, and 16 processors over dataset sizes
ranging from 64 to 8192 items. The serial and
parallel CPU times and the speedups for each
algorithm are presented.

1. INTRODUCTION
According to the multiplicity of instruction

and data streams, digital computers can be
classified into four categories as folows [9]:
single instruction stream — single data stream
(S1SD), single instruction stream — multiple data
stream (SIMD), multiple instruction steam —
single data stream (MISD), multiple instruction
stream — multiple data stream (MIMD). The
research reported here was done on the Denelcor
HEP, an MIMD computer.

Performance of parallel algorithms on MIMD
machines is often measured by the speedup ratio.
Ideally, the speedup that can be achieved by a
parallel computer with n processors working con-—
currently on a single problem is at most n (times
faster than a single processor). In practice,
the speedup is less than n because some pro-—
cessors may be idle at a given instant. The
speedup ratio is defined to be the ratio of the
time required for the problem using the best
uniprocessor algorithm to the time required by a
given parallel algorithm. Thus, the speedup

ratio is §(k) = 7(1) y 7(k) pere s(k) 44 t?e
sEeedup ratio by using k processors, and 1) ang
(k) are the times required for solving the

problem using one and k processors, respectively.

s(k) = k is often called the optimal speedup
ratio.

2. THE HEP MULTIPROCESSOR SYSTEM

The Denelcor Heterogenous Element Processor
(HEP) is a large scale scientific multiprocessor
system which can execute a number of sequential
(SISD) or parallel (MIMD) programs simulta-
neously. The system contains up to 16 Process
Execution Modules (PEM) and up to 128 Data Memory
Modules(DMM). The PEM and DMM are connected with
the I/0 and the control subsystem. The HEP is
the first commercially available MIMD multipro-—
cessor system, It is manufactured by Denelcor,
Inc. Aurora, Colorado. For details on the archi-
tecture of the HEP see [7, 9, 10, 15].

The PEM is designed to execute multiple
independent instruction streams on multiple data
stream simultaneously. This is accomplished by
pipelining each PEM with multiple functional
units. Here, maximum parallelism can be achieved
by providing multiple independent instruction
streams executing multiple data streams in a
pipelined fashion. Because the multiple instruc-
tions executed concurrently by an MIMD machine
are independent of each other, the execution of
one instruction does not influence the execution
of the other instructions and true parallelism in
processing may be achieved.

Extensions were made to Fortram 77 and to
C on the HEP to provide language support for
parallel processing. A special data type called
an asynchronous variable was introduced to enable
synchronization between cooperating and competing
processes. Such a variable may be written into
only when its location is "empty"” and may be
fetched only when it is "full". Either operation
on an asynchronous variable that does not meet
these requirements waits under hardware control
until the proper access state is set by a
parallel process. A statement called CREATE is
used to create a parallel process. It is similar
to a Fortran CALL, but it causes the created
subroutine to run in parallel with its creator.
The created Process is eliminated when it reaches
the RETURN statement.

3. PARALLEL SORTING AND MERGING ALGORLTHMS.
In this section we describe four parallel
merge—sort algorithms: (1) Parallel merging; (2)

Bubble/merge; (3) Batcher's odd—even merge; and

(4) Quicksort/merge. All of these algorithms can

be classified as "easy split and hard join"

sorting algorithms [3, 13, 14]. The basic

idea behind each algorithm is the same and is

described as follows:

& Divide the original sequence of numbers of
length n into k subsequences each of length

N. Using k processors, sort these sub-

sequences in parallel using a serial sorting

algorithm,
2. Merge the k sorted subsequences in parallel
using a parallel implementation of the tree

(or tournament sort) algorithm.

Each of the four algorithms was run using k
=1, 2, 4, 8 and 16 processors on datasets of
sizes n = 64, 128, 256, 512, 1024, 2048, 4096 and
8192. Tables reporting results of CPU times and
speedup only show results for n = 128, 512, 2048
and 8192 to conserve space. All datasets consist
of randomly generated values.

3.1 Parallel Merging

The concept of merging invelves a multipass
process, in which consecutive passes create
longer and longer partitions until a final pass
develops a partition containing all elements of
the list to be sorted. The number of passes
required depends on the initial number of par-
titions and the order of the merge. Consider a
merge sort on a list of 16 elements. The merge
process is entered with 16 partitions of size I.
The first pass will merge the initial 16 par-
titions into 8 partitions of two elements each,
using a two way merge. The process of merging is
repeated again and again until a sorted sequence
of 16 items is formed. There are 8 independent
processes in pass 1 that can be done simulta-
neously. These independent processes will
decrease by a factor of 2 in every pass until
only one process can be activated to merge the
final sequence. Parallelism is introduced by
having 8 processes work on the initial subsequen-
ces, 4 processes active at the next merge stage,
etc, until only one process is used to merge the
final sequence. However, due to the limited
number of processes that can be used simulta—
neously on the HEP, this concept fails to work
when the number of items exceeds twice the number
of processors available.

To implement an algorithm that can be run on
the HEP, we partition the initial unsorted
sequence into k subsequences (1 < k < 16) and
sort the subsequences in parallel using k pro-—
cessors and the sequential merge sort algorithm.
Next, we merge the k sorted subsequences in
parallel using the merge sort until a sorted
sequence 1s formed. Hence we call this algorithm
Parallel merging. Tables 1 and 2 show the CPU
times and speedup for the Parallel merge, respec-
tively. Figure 1 graphically illustrates the
speedup of the Parallel merge. Here, the number
of comparisons required is the same on the
average, independent of k. Thus, the speedup
obtained is due solely to the use of multiple
processes.

n= 128 512 2048 8192
k

1 0.045 0.223 1.068 4.977
2 0.025 0.123 0.580 2.673
4 0.017 0.079 0.358 1.611
8 0.014 0.060 0.262 1.153
16 0.014 0.057 0.240 1.068

Table 1. Parallel merge times (sec) for n items,
k partitions and k processors

1=8192 items
2=4096 items
3=2048 items

5 4=1024 items
i §= 512 items
6= 256 items 1
7= 128items 5
8= 64items a
4 -
5
[
7
3 =
8

SPEEDUP ti1/tp

1 . 1oy TR TR " N

A s i PR S PR G |
T d 4 5 8 7 8 8 10 11 12 13 44 15 168 17 18

MNUMBER OF PROCESSES

Figure 1. The Speedup of Parallel merge

3.2 The Bubble/Merge Sort

This algoritm is similar to the Parallel
merge just described. It combines the bubble
sort with the merge sort and runs both in
parallel. Here, we divide the original unsorted
sequence into k subsequences to be executed on k
processors. These subsequences are first sorted
using the bubble sort. Then the merge sort is
used to merge two of the sorted subsequences.

The choice of the number of partitions (k)
will affect the operation of the system in
several ways. First the number of comparisons
required to sort (or the actual work to be done)
varies with k. Second, the number of processes
that can be assigned to do the work also varies
with k. Finally, the ability of the HEP to
handle multiple concurrent processes varies with
the number of such processes [8]. Table 3 shows
the serial times (sec) for the Bubble/merge sort
using k partitions, but only one processor. As
may be seen from this table, the serial sorting
times decrease as the number of partitiomns
increase. This is because the number of com—
parisons (the actual work to be done) decreases

n= 128 512 2048 8192
k

1 1.00 1.00 1.00 1.00
;— 1.80 1.81 1.84 P 1.86
4 2.65 2.82 3.05 3.09
; 3.21 3.72 4.08 4,32
16 3.21 - 3.91 4.45 4,66

Table 2. The Speedup for Parallel merge

as the number of partitions increase. The number
of comparisons for the bubble sort is ﬂ(nz),
whereas the number of comparisons for the merging
process is 0(n), where n is the number of items.
Thus, the speedup for the serial version is
obtained from reducing the number of items to be
sorted using the bubble sort. Figure 2 illustra-
tes the speedup of the serial Bubble/merge sort
due to multiple partitions not multiple pro-
cessors. Table 4 shows the parallel sorting
times (sec) for the Bubble/ merge sort. The
parallel sorting time is obtained when k pro-
cesses are used to bubble sort the k original
unsorted subsequences in parallel, then merge the
k sorted subsequences simultaneously using a
parallel implementation of the tree sort. This
speedup may exceed the number of processes used
because the speedup is due not only to the use of
parallel processes but is due also to the use of
multiple partitions (that is, the algorithm
changes with k). Figure 3 illustrates the

speedup for parallel Bubble/merge sort.

From

this Figure we see that the speedup (tl/t) is as
high as 50 for 4096 items and 8 partitions
(processes), even though the maximum linear
speedup 1s 8 if 8 processes are used. Figure 4
illustrates the normalized speedup. This nor-
malized speedup, due only to parallel com-
putations, is obtained by dividing the time
required to sort using a serial algorithm by the
time to sort using a parallel algorithm with both
algorithms utilizing the same number of par-—
titions. The normalized speedups do conform to
theoretical limits. When more than 8 processes
are used the pipeline becomes full and only a
small amount of additional speedup can be
achieved. The speedup of the algorithm increases
somewhat as the number of items to be sorted
increases. This is because each process has more
computations to perform and a correspondingly
smaller percentage of time is spent on synchroni-
zation.

3.3 Batcher's 0Odd-Even Parallel Merging

Historically, Batcher's Odd-Even merging is
one of the earliest parallel sorting networks
to appear in the literature [1]. It is a
parallel sorting algorithm based on the principle
of iterated merging. This scheme can be
described as a multiple-input muliple-output
switching network, in which all input data are
available at once and the output sorted data are

n= 128 512 2048 8192
k
1 0.117 1.885 30.20 477.
2 0.065 0.970 15.10 239.
4 0.041 0.520 7.6 120.
8 0.032 0.306 4.0 6l.
16 0.031 0.210 2.2 31.
Table 3. Bubble/merge sort serial sorting times
(sec) for n items and k partitions on
one processor
n = 128 512 2048 8192
k
1 0.120 1.915 31.0 495.
2 0.036 0.516 7.9 124,
4 0.069 0.160 2.2 32.
8 0.013 0.072 0.7 9.
16 0.013 0.055 0.4 4.
Table 4. Parallel Bubble/Merge Sort Time (sec)
for n items, k partitions and k pro-
cessors
102
1=8192 items
2=4096 items
3=2048 ilems
| 4=1024 items
5= 512 items
6= 256 items 1
7= 128items 2
8= 64items
3
4
10
5
6
a
S
"y 7
g
(=}
i
& — 8
1!. 2‘_3 4 5 8 7: B 8 10 11 ;2 13 14 5 !‘3 1:7
NUMBER OF PROCESSES
Figure 2. Speedup of Bubble/Merge Sort due to

Multiple Partitions

1=8192 items
2=4096 items
3=2048 items
4=1024 items
5= 512 items
6= 256 items
7= 128items
8= 64ilems

EN TN

wn

SPEEOUP ti/tp

1 2 3 4 5 B 7 8 8§ {0 i1 42 13 14 15 18 17 18

NUMBER OF PROCESSES

Figure 3. The Speedup of Parallel Bubble/merge

w0 sort
1=8192 items
o1 2=4096 items
3=2048 items
4=1024 jtems
8 .
i 5= 512 items
6= 256 items !
7 7= 128items
8= 64items 2
8
|
3
5
4
a
-
b 4
- 5
a
2 x
& 3
¥ 6
w
7
e 8
NUMBER OF PROCESSES
1 .
i 2 3 4 5 8 7 8 8 10 11 42 13 14 15 18 47 18

Figure 4. Normalized Speedup of Bubble/Merge
sort due to Parallel Computations

produced simultaneously after all input data are
compared and exchanged iteratively. The basic
element of a sorting network is a comparator and
switch module. Here numbers entering at the left
are compared and sent out at the right. This
module causes an interchange of its data, if
necessary, so that the larger number appears on
the lower line after passing through the module.
When the initial sequence of 2k ftems is to be
sorted, iterated merging creates sorted sequences
of length 2, 4, 8 ..., 2k during successive sta-—
ges of the algorithm. Consider Batcher's
0dd-Even parallel merging algorithm. This
algorithm is described as follows:
1. Let a; < ap < a3 < ... < a; and b} < by <

by < ... < b, be two sorted sequences to be

merged, where for simplicity, we assume n =

2K and k > 0. If k = 0 the network is a
single comparator module.

2. For any k > 1 generate the odd sequences
(al, ay ess , an_l) and (by by, «e. , by_p)
and merge them using Odd-Even merge to
obtain a sorted sequence d; { dy < ... <
d . Likewise generate the even sequences
(ap, a4, -« , ay) and (by, by ... , by) and
merge to obtain a sorted sequence e} < e, <
eee <o

3. Define cj = dj, the lowest value of the odd
merge
gy = min [dyyg,eq] ¢pyqp = max [dyy),eq);
i=1,2,ee., n-1
and
Cyp = €, the largest value of even merge.

It can be shown that ¢; < ¢y < e3 € +.ve < g9y 1s

the sorted sequence {li]. It may be noted here

that to sort N items, the Odd-Even sorting net-
work requires 0((logyN)2) steps and O(N(logyN)?)

comparators. Figure 5 illustrates a 4 by 4

0Odd-Even merge for sorting 8 numbers of arbitrary

order. From this Figure we see that when we are
to sort an unsorted sequence of 8 items, the

first stage generates 4 sorted subsequences of 2

items each, in which one step of 4 parallel com—

parisons is performed. In the second stage, two
steps of 4 and 2 parallel comparisons are needed

to merge the 2 item sorted subsequences into 4

item sorted subsequences. Finally, 3 steps of 4,

2, and 3 parallel comparisons are needed to merge

the two sorted sequences into 1 sorted sequence

of 8 items. If it is assumed that a single com—
parator exchange module can be replaced with one
process, there are a maximum of 4 processes that
can be used simultaneously. Again, this
algorithm fails to work as the number of items
exceeds 100, (twice the maximum available pro-—
cesses on one PEM in the HEP). Our implemen-—
tation of Batcher's odd-even sort on the HEP is
described as follows:

STAGES | | 1

g 2} 2 F 1 F— 1

z.gglg} 7 3 P 3]2 % 2

7 3{ 3 I?{? 6 2 3 } 3

3 I? { 9 }9 B 4 4 } a

B 1% 1 }1 2 6 [5 { .5

1—__Ig} 6 4 {4 4 8 7 {__,7

s 4{ 4 k P 7 Is %_48

4 ft: zndB 3rdla 2 5thg %45(;:TED
UT&?S;ED 1 I = sth I OUTPUT

Figure 5. 4 by 4 0Odd-Even Merging Network.

Once again, the original unsorted sequence is
divided into k subsequences. These subsequences
are first sorted using the Batcher's Odd-Even
merging, then using the same algorithm, two of
those sorted subsequences are merged. However,
in this case, since non-overlaping comparison-—

exchanges can be performed in every stage, all
processors can be used to merge the sorted sub-
sequences until a sorted sequence containing all
items 1s obtained! We implemented a modification
of Batcher's odd-even algorithm developed by
Sedgewick [16]. Figure 6 illustrates the modifi-
cation of Batcher's Odd-Even merging for sorting
8 arbitrary items. Here, an additional step is
needed to shuffle the input after each step of
comparison—exchange.

STAGES SHUFFLE SHUFFLE
st ! and 1 1 ard I
2 2] 2 2 2] 1 1
9 3 f i 1 T 1
9 3] IS 3 1) 12 2 2]
2 T I 1] I] 2
3 9} 7 17 3 3 3
7 T I 1 1 [—3
7 71 9 9 4) 4 4 41
Fe—g 1 i T I I .
1) 11 7) - 6l 6|
8 In T I i] I T 6
6] 4] 4 .4 6 7 71
1 :><C T 1 i] I i 7
4] 8] 6 |6} 9 8 8__184
8 [I i i] i &
8 8 IB 8y 8 IB 9,
4] 1 f 1 i 8
UNSORTED | | | | | SORTED
INPUT OUTPUT

Figure 6. Modification of Batcher Odd-Even
Merging

In the shuffle process, the first sorted input
array is moved into the odd positions, A[l],
A[3], ++.. , A[2N-1] of the output array, and the
second sorted input array is moved into the even
positions A[2], A[4], ... , A[2N] of the output
array. Then Batcher's method may be implemented
as follows:

for j =1, 2, «ee , N
if A[25-1] > A[2j] then swap

next j

for d = 210g2N_1, zlogzN—Z’ eway 1
for 3 =1, 2, +o., N=d

if A[2j] > A[2j+2d-1] then swap

next j

next d

In this program, we see that the only statements
which actually operate on the data are the
compare—exchange statements of the form:

if A[2j-1] > A[2j] then swap

and

if A[2j] > A[2j+2d-1] then swap;
and these are performed in the same order
regardless of the input. To execute this program
in parallel, a slight modification is performed
as described below:

DO 500 J=1,NPROC

KK (J) =J

CREATE CPEXL(A, ISTART,LEND, KK(J))
500 CONTINUE

SUBROUTINE CPEX1(A, ISTART, IEND, NPROC)

DO 700 K=ISTART-1+NPROC, IEND/2, NPROC
IF (A(2*J-1) .GT. A(2*K)) THEN
SWAP
ENDIF
700 CONTINUE
RETURN
END

From the algorithm described above, we see that
one process will not only perform a single
comparison—exchange, but the compare exchange
tasks are more evenly distributed among the pro-
cesses used. Tables 5 and 6 show the serial and
parallel times (sec) for Batcher's 0dd-Even
merge., The serial times increase as the number
of partitions increase. This is due to the
overhead created from the call statement of the
program, Table 7 and Figure 7 show the speedup
of parallel Batcher's Odd-Even merge. This
speedup is obtained by dividing the time required
to sort the items for the serial version with the
time required to sort for the parallel version
with the same partitions.

n= 128 512 2048 8192
k

1 0.068 0.359 1.859 9.401
2 0.071 0.370 1.914 9.659
4 0.079 0.412 2.120 10.61
8 0.094 0.479 2,436 12.13
16 0.117 0.573 2.882 14.17

Table S. Serial Sorting Times (sec) of Batcher's
Odd-Even Merging for n items, k par—
titions on one processor

n= 128 512 2048 8192
k

1 0.068 0.359 1.859 9.401
2 0.043 0.218 1.121 5.560
4 0.032 0.154 0.769 3.745
8 0.028 0.129 0.630 2.998
16 0.032 0.137 0.666 3.156

Table 6. Parallel Sorting Times (sec) of
Batcher's Odd-Even Merging for n
items, k partitions and k pro-
cessors

n= 128 512 2048 8192
k
1 1.00 1.00 1.00 1.00
2 1.65 1.70 1.71 1.74
4 2.47 2.67 2.76 2.83
8 3.36 3.71 3.87 4.05
16 3.65 4,18 4.33 4.49
Table 7. Speedup of Batcher's 0dd-Even Merge
due to Parallel Computations
8
1=8192 items
2= 4096 items
3=2048 items
5 4=1024 items
5= 512 items
= 256 items 1
128 items %
64items
5
6
7
"
2
I
&

4 2 3 4 8§ 8 7 8 8 410 11 12 13 44 15 118 47 i8

NUMBER OF PROCESSES

Figure 7. The Speed-up of Batcher's 0dd-Even
Merge Due to Parallel Computations

3.4 Quicksort/Merge Parallel Sorting Alorithm

The original unsorted sequence is divided
into k subsequences. These subsequences are
first sorted using quicksort. Then a merge sort
is used to merge the sorted subsequences two at a
time until the final sorted sequence contalning
all items is obtained. Here, once again the
number of partitions (k) affects the system
operation. However, k has a greater effect on
the bubble/merge sort. The number of comparisons
for the quicksort is in the order of (C*N*logzN),
where N is the number of items and C is some
constant value between 1.1 and 1.4 [17]. The
number of comparisons for the merging process is
0(C*N) and involves log,k passes. Thus, we see
that there are only small variations of time
obtained when this algorithm is executed on one
processor (serial). Tables 8 and 9 show the
serial and parallel times (sec) for the
Quicksort/merge algorithm. Table 10 shows the
normalized speedup. Figure 8 illustrates the
speedup due only to parallel computations for the

Quicksort/merge algorithm. From Tables 8, 9, and
10 we see that even though there is a factor of
about 6 speedup obtained (for sorting 8192 items
with 16 partitions), the time required to sort
them in parallel is only 0.322 seconds. This
shows that an excellent serial algorithm greatly
influences the performance of a parallel system.

n= 128 512 2048 8192
k

1 0.020 0.104 0.502 2.404
2 0.024 0.118 0.552 2.566
4 0.027 0.130 0.601 2.752
8 0.023 0.108 0.515 2.398
16 0.019 0.092 0.449 2.139

Table 8. -Serial Times (sec) of Quicksort/Merge
algorithm for n items and k partitions
on one processor

n= 128 512 2048 8192

k

1 0.021 0.106 0.516 2,434
2 0.015 0.073 0.332 1.494
4 0.013 0.057 0.248 1.083
8 0.007 0.028 0.123 0.535
16 0.005 0.017 0.072 0.322

Table 9. Parallel Times (sec) of Quicksort/Merge
due only to Parallel computations.

n= 128 512 2048 8192
k

1 1.00 1.00 1.00 1.00
2 1.60 1.62 1.66 1.72
4 2.08 2.28 2.42 2.54
8 3.28 3.86 4.19 4,48
16 3.80 5.41 6.24 6.64

Table 10. Speedup of Parallel Quicksort/Merge
Algorithm

1=8192 items
st 2= 4096 items
3=2048 items
4=1024 items
5= 512 items
6= 256 items

7 7= 128items
i 8= 64items 1
2
8| 3
4
5
5 -
6
a
o
= 4 :
= [7
-8
=1
w 3 8
a
w

1 2 3 4 é B 7 8 8 10 11 12 13 34 15 18 17 4B

NUMBER OF PROCESSES

Figure 8. The Speedup of Quicksort/Merge
algorithm due to Parallel
Computations

b RESULTS AND CONCLUSIONS

Several parallel merge sorting algorithms
were developed and implemented on the HEP. These
algorithms were all based on the concept of
dividing the original unsorted sequence into a
number of subsequences and sorting them separa-
tely in parallel. Then, the sorted subsequences
are merged in parallel. Consider the following
summary graphs showing CPU tmes and speedups via
algorithm (Figures 9 and 10). From Figure 9,
curve 1, we see that the speedup for the
Bubble/merge sort exceeds the number of pro-
cessors used because in this case the speedup is
due not only to the use of parallel processes,
but is due also to the use of multiple partitions
(that is, the algorithm actually changed with k).
For this reason we have plotted normalized
speedup (due only to the use of parallel pro-
cesses) for all four algorithms in curves 2
through 5. Among the other three alorithms,
Batcher's merge and Parallel merge yielded about
the same speedup ratios. Quicksort/merge yielded
the best speedup performance. When more than 8
processors are used the pipeline becomes full and
only a small amount of speedup can be achieved.
Among the algorithms evaluated, the combination
of the Quicksort/Merge was the best in terms of
parallel CPU times.

1 = Bubble/Merge |unnormalized|
10 } 2 = Bubble/Merge
1 3 = Quicksort / Merge
9 L 4 = Parallel Merge
5 =Batcher Merge

SPEEDUP

1 . N .
12 4 8 16

NUMBER OF PROCESSORS N:=8192

Figure 9. Composite graph showing normalized
speedups for all four algorithms and
unnormalized speedup for
Bubble/merge sort with N=8192

1=Bubble / Merge
10 - 2=Batcher Merge
3=Parallel Merge
4=Quicksort / Merge

CPU TIME
Py

o1 2 4 8 16
NUMBER OF PROCESSORS N=8192

Figure 10. Composite graph of CPU times for all
algorithms and N=8096

The Parallel merge also yielded excellent CPU
times (see Figure 10). The Bubble/merge
algorithm required the greatest CPU times despite
its inflated speedup performance. It is
interesting to note that the Parallel merge and
Batcher's odd—even merge had almost identical
speedups. However, the Parallel merge performed

significantly better than Batcher's merge in CPU
times. Batcher's Odd—-Even Merge is a network
sorting algorithm designed for large numbers of
processors. Sixteen to thirty-two processors is
far short of the 512 to 1024 or more processor
environment that it was designed for. Parallel
merge, Bubble/merge and Quicksort/merge are
divide and conquer algorithms. Thus, the better
performing algorithms in serial are the better
performing algorithms in parallel in our ecir-
cumstances, where the number of processors is
considerably fewer than the number of items to be
sorted.

Over the last decade, parallel sorting has
been a topic of active research. There are many
parallel sorting algorithms currently known,
ranging from network sorting algorithms to
algorithms for hypothetical shared memory
parallel computers, or VLSI chips. Typically,
algorithms have been developed for hypothetical
computers that utilize unlimited parallelism and
space for solving the sorting problem in a
hypothetical minimal time. Further research is
needed to determine whether these algorithms can
be adapted to realistic models of parallel com-—
putation.

Finally, the implementation of parallel
algorithms on the HEP is a natural and straight-
forward process. It is concluded that the HEP
can be applied to advantage in the effective pro-
cessing of data sorting algorithms.

ACKNOWLEDGEMENT

The authors wish to acknowledge the tech-
nical support and encouragement given by Los
Alamos National Laboratory and various staff mem—
bers including Ann Hayes, 0Olaf Lubeck, and Bob
Hiromoto. Dale Carstenson and Larry Wolf of the
Denelcor staff at Los Alamos have been helpful in
solving various problems and in facilitating our
remote operation.

REFERENCES

1. Batcher, K. E., "Sorting Networks and Their
Applications”, Proc. AFIPS 1968 SJCC, vol.
32, Montvale, NJ: AFIPS Press, pp. 307-314.

2. Bitton, Dina; DeWitt, David J; Hsiao, David
K; and Menon, Jaishandar; "A Taxonomy of
Parallel Sorting"”, Computer Surveys, vol.
16, no. 8, September 1984, pp. 287-318

3. Cheung, J; Dhall, S.; Lakshmivarahan;
Miller, L.; and Walker B.; "A New Class of
Two stage Parallel Sorting Schemes™, Proc.
Natl. Assoc. Comput. Mach. Conf., 1982, pp.
26-29.

4, Cook, Curtis R.; and Kim, Do Jin; "Best
" Sorting Algorithm for Nearly sorted Lists™,
Communication of the ACM, vol. 23, no. lIl,
November 1980, pp. 620-624

5. Dongarr; J. J.; and Eisenstat; "Squeezing
the most out of Algorithms in Cray Fortran”,
Argone National Laboratory, May 1983.

8.

9.

10.

11.

12.

13.

14,

15.

16.

17.

Dongarra, J. J.; and Hiromoo, Robert E.; "A
Collection of Parallel Linear Equation
Routines for the Denelcor HEP", Parallel
Computing, vol. 1, no. 2, December 1984.

Fortran 77 Refrence Manual Release 1.0,
Denelcor Inc., Aurora, Colorado, Publication

Number 9008020-000, June 1984

Hagan, Martin T.; Demuth, Howard B.; and
Singgih, Paul H.; "Parallel Signal
Processing Research on the HEP",
Proceedings of the 1985 International

Conference on Parallel Processing. St

Charles, Ill., August 20-23, 1985, pp.
599-606

Hwang, Kai; and Brigg, Faye A.; Computer
Architecture and Parallel Processing, McGraw

Hill, 1984.

Jordan, Harry F.; Performance Measurements
on the HEP a Pipelined MIMD Computer,
Electrical and Computer Engineering
Department Univ. of Colorado, Boulder,
Colorado, 1981.

Knuth, Donald E.; The Art of Computer
Programming, vol. 3, Sorting and Searching,
Addison Wesley, Reading MA., 1973.

Kung, H. T.; The Structure of Parallel
Algorithms, Advances in Computers, vol. 19,
Academic Press Inc., 1980.

Lakshmivarahan, S.; Dhall, Sudarshan, K.;
and Miller, Leslie L.; Parallel Sorting
Algorithms, Advances in Computers, vol. 23,
Academic Press Inc., 1984,

Merritt, Susan M.; “An Inverted Taxonomy of
Sorting Algorithms™; Communication of the
ACM, vol. 28, no. 1, January 1985, pp. 96-99

Moore, James W.; The HEP Parallel Processor,
Los Alamos Science, Fall 1983.

Sedgewick, Robert; "Data Movement in Odd-Even
Merging", Journal Comput. SIAM, vol. 7 no.
3, 1978, pp. 239-272

Wirth, Niklaus; Algorithms + Data Structures
= Programs, Prentice Hall, 1976

