PROCEEDINGS OF THE 1992 ACM/SIGAPP SYMPOSIUM ON APPLIED

COMPUTING (SAC'92),

Kansas City Convention Center March 1-3,

199%2.

Solving Combinatorial Opfimimtion

Problems Using Parallel Simulated Annealing
and Parallel Genetic Algorithms®

Pooja P. Mutalik
Leslie R. Knight
Joe L. Blanton
Roger L. Wainwright

Department of Mathematical and Computer Sciences
The University of Tulsa

ABSTRACT

There are many combinatorial optimization problems for which
there exists no direct or efficient method of solution. Simulated
annealing (SA) and genetic algorithms (GA) are two promising
techniques for solving large optimization problems. The authors
have developed a parallel simulated annealing algorithm and a
parallel genetic algorithm for a hypercube multiprocessor
system. To compare the performance of these algorithms, we
investigated two representative combinatorial optimization
problems, the Traveling Salesman Problem (TSP) and the one-
dimensional Package Placement Problem (PPP). The parallel
genetic algorithm performed consistently better than the parallel
simulated annealing algorithm in all of the cases tested. In
addition, we tested five crossover functions on the sequential
genetic algorithm for the Package Placement Problem and
determined in every case the edge recombination crossover
function was superior. There are some significant differences
between genetic algorithms and simulated annealing that may
account for the superior performance of the parallel genetic
algorithm for these types of problems. We found it fairly easy
to fine tune the parameters that drive a parallel GA for near
optimal performance (population size, migration rate, and
migration interval) compared to the parameters that drive a
parallel simulated annealing algorithm. Furthermore, our paral-
lel genetic algorithm is more mature than our newly developed
parallel simulated annealing algorithm. Several future en-
hancements to the parallel simulated annealing algorithm are
presented.

* Research partially supported by OCAST Grant AR0-038 and
Sun Microsystems, Inc.
”Per'missian to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given |
that copying is by permission of the Association for Computing |
Machinery. To copy otherwise, of to republish, requires a fee |

and/or specific permission.
® 1992 ACM 0-89791-502-X/92/0002/1031...41.50

f
|
?

INTRODUCTION

In the fields of Operations Research and Artificial Intelligence,
there are many combinatorial optimization problems for which
there exists no direct or efficient method of solution. Research-
ers have recently become interested in solving large combinato-
rial optimization problems using large numbers of processors.
These algorithms offer optimal or near optimal solutions to
many important optimization problems [14, 15, 18]. On a
sequential machine for large n, timings from O(n®) time to
exponential time are commonly required. Since this is too
expensive, less time consuming algorithms have been developed
such as greedy algorithms. These less expensive algorithms
rapidly find a "good" solution, but not an optimal solution or
even near optimal solution. With the advent of parallel proces-
sors, new opportunities open up for effective solutions of
combinatorial problems that were not available only a few years

ago.

Finding a solution to many combinatorial optimization problems
requires an organized search through the problem space. An
unguided search is extremely inefficient since many of these
problems are NP-complete. Genetic algorithms and simulated
annealing are promising techniques for solving large optimiza-
tion problems. In this paper we look at two representative
combinatorial optimization problems, the Traveling Salesman
Problem (TSP) and the one-dimensional Package Placement
Problem (PPP). Both problems were implemented and solved
using a parallel simulated annealing algorithm and a parallel
genetic algorithm developed by the authors. The rest of the
paper is presented as follows. In Section 2 we review the Trav-
eling Salesman Problem and the Package Placement Problem.
In Section 3 the fundamentals of simulated annealing are
reviewed. In Section 4 a parallel simulated armealing algorithm
is described. In Section 5 the fundamentals of genetic algo-
rithms are reviewed and in Section 6 a parallel implementation
is described. Results and conclusions are presented in Section
7. Future research issues are given in Section 8.

Package Placement and Traveling Salesman Problems

In the Package Placement Problem (sometimes called the
Optimal Linear Arrangement Problem), we are given n packages
and a network of interconnections between the packages. The
problem can be stated as a undirected graph problem where the
packages are the vertices and the edges are labeled as weights
between a pair of packages. The weight w(a,b) of edge (a,b)
represents the number of "wires" connected between packages a
and b. The problem is to linearly arrange the packages, p ,
PynsPp such that the sum of li-jl W(P.’p over all pairs { and j is
minimized [1]. This problem has a number of applications. The
packages could be boards, chips, cells, etc. and the interconnec-
tions are the number of wires to be connected between each of
the packages. This concept can easily be extended to two
dimensions, where the packages have a height and width in a
two dimensional plane such as a circuit board.

Given a set of n points in a plane corresponding to the location
of n cities, find the minimum distance closed path that visits
each city exactly once. This is called the Traveling Salesman
Problem. The Traveling Salesman Problem belongs to a class of
minimization problems for which the objective function has
many local minima. The objective function is simply the total
length of the tour. The traveling salesman route can be thought
of as a circular arrangement of n cities, or as a permutation of a
list of n cities. Solving this problem requires O(n!) computation
time since the number of possible tours for n cities is (n-1)!. For
even a modest size n it would be impossible to check all possi-
ble permutations of n cities in a reasonable amount of time even
with current parallel hardware. In this paper it is assumed each
city is directly connected to every other city by Euclidian dis-
tance. That is, distances satisfy the triangle inequality, which
means that the direct route between any two cities is never more
than an indirect route between two cities. This assumption helps
in the design of approximation algorithms for this problem.

We chose The Traveling Salesman Problem and the Package
Placement Problem because they are representative problems of
a wide variety of combinatorial optimization problems where
the solution space is all permutations of n objects. Other
combinatorial optimization problems that fall into this category
include the Bin Packing Problem, Job Scheduling problems,
Stock cutting, vehicle routing and transportation scheduling
problems, etc. Developing efficient parallel simulated annealing
and parallel genetic algorithms to solve these two problems will
have direct applications for solving a host of other practical
combinatorial optimization problems.

SIMULATED ANNEALING

Simulated annealing is a stochastic computational technique for
finding near optimal solutions to large optimization problems.

The method of simulated annealing is an analogy with thermo-
dynamics, specifically in the manner that metals cool (anneal),
or in the way liquids freeze and crystallize. If liquid metal cools
too rapidly, atoms do not have time to line themselves up to
form a pure crystal. Instead a rather high energy state is
reached. However, if the metal is cooled slowly atoms have
time to line themselves up to form a minimum energy system
[19]. Metropolis [21] in 1953 was the first to incorporate these
concepts into numerical calculations. Kirkpatrick [16] in 1983
was the first to use this concept to solve combinatorial optimiza-
tion problems.

In the Package Placement Problem, simulated annealing starts
with an arbitrary initial linear arrangement. The objective func-
tion, which is the sum of the length of the wires needed to
connect all of the packages, is analogous to the current energy
state of the system. A convergence condition of simulated
annealing is that any state can be reached from any other state.
A simple perturbation function, package exchange, is used to
move from one state to another, That is, two packages exchange
positions in the linear arrangement. Changes from one state to
another (ie., a new placement from a previous placement) that
result in a reduced objective function are always accepted. This
is a analogous to slow cooling. However, changes that increase
the objective function are only accepted with probability p(d,T)
= exp(-d/T), where d is the change in the objective function
from one arrangement to another, and T is the "temperature” of
the system. The temperature parameter controls the annealing
process. By occasionally allowing the energy of the system to
rise slightly before cooling again is analogous to occasionally
allowing for a worse package placement. This may allow the
system to avoid falling into a local minima where it cannot get
out.

The annealing schedule, controlled by the parameter T, requires
some experimentation. Generally T is normalized and begins at
one. At each step T is decreased by some amount, 0.01 for
example, until a minimum state is encountered. In our system
the user can input the initial temperature and the change in
temperature at each step. Typically the system freezes at a
certain temperature. At each temperature one iterates some
number of times producing and accepting new package ar-
rangements. This may range from one to several thousand itera-
tions at a given temperature. Nahar er al. [23] give an excellent
overview of simulated annealing.

PARALLEL SIMULATED ANNEALING

The parallel simulated annealing and parallel genetic algorithms
have been developed on a hypercube. The algorithms can easily
be adapted to shared memory multiprocessor systems or other
distributed memory systems. An n-dimensional hypercube
consists of 2" processors interconnected as an n-dimensional

binary cube. Each processor is a node of the binary cube with
its own local memory and CPU. Each processor is directed
connected to n other adjacent (neighboring) processors.
Communication is a hypercube is accomplished by message
passing. It is assumed the reader is generally familiar with the
hypercube multiprocessor system.

Our algorithm for implementing the Package Placement Prob-
lem using simulated annealing has three phases. We use aring
topology hypercube arrangement. In general terms, phase 1 is
concerned with the distribution of the packages among the
processors and the interaction among the local packages within
each processor. In phase 2 some interconnection scheme is used
to move or redistribute the packages among the processors who
have packages great distances apart. In phase three packages
are exchanged (rotated) among adjacent processors in the ring.

Initially the packages are distributed evenly as possible among
the ring of processors. The arrangement of the packages taken
as a whole around the ring of processors constitutes the linear
package arrangement. In phase 1 each of the local packages
within each processor interact with each other using the package
exchange perturbation function. That is, two packages in each
processor are selected and exchange position. We tried two
different ways for selecting the packages: randomly and adja-
cent packages. After extensive study we determined selecting
randomly a pair of adjacent packages and exchanging them was
superior to selecting two packages at random for exchange. The
objective function is calculated to determine if this new ar-
rangement is accepted. Global communication in a hypercube is
very expensive and should be avoided, if possible. Notice each
processor can determine if exchanging two of its packages re-
sults in a better arrangement independent of having to know
how other processors are rearranging their packages. Thisis a
vital part of the algorithm since global communication during
this phase is not necessary. The following theorem addresses
this issue.

Theorem:

Local exchange between two adjacent packages P, and P, 1<=
i <= n, is independent of the order of packages to their left and
to their right. It is assumed packages to the left of P, and to the
right of p_, do not switch sides.

Proof:
Given two adjacent packages, P, and P, an exchange is made if
the following condition holds [1]:

lva.l(pl) - rval(pi) +mval(p,) - lval(pm)
+2wep;p) <0 &

where lval(pl) is defined as the sum of weights between P, and
packages to the left of p, and rval(pi) is defined as the sum of
weights between P, and packages to the right of P,

That is, lval(p) = Sum w(pk. pl). k=1,i-1 and rval(p) =
Sum w(pk, pl), k=i+ln.

Notice, the distance between the packages is not considered in
the formula. The condition (1) above can also be restated as:
exchange p, P) if the following expression is negative

Sum w(p, p) - Sum w(p,p) + Sum w(p_, p)
k<i k>i k>i+1

- Sum wip,p,)+ 2Wp,p,
k<i+l

Consider any two packages, ;4 and P, to the left of p. Assume
P, is left of P Now suppose P, and py exchange positions and
P, is now left of p . This has no effect on the above criteria (1)
for exchanging P, andp_ . Similarly exchanging the position of
any two packages to the right of p does not effect the criteria
for exchanging p and p_ , as long as the two packages remain to
therightofp_, which proves the theorem.

After some number of local package exchanges a "hyperswap”
(phase 2) step takes place. Here packages are exchanged with
adjacent nodes in the hypercube along each of the dimensions of
the hypercube. Thus in a d-dimensional hypercube a given node
will cycle through all of its d adjacent neighbors in d successive
phase 2 steps. This is traditionally called "hyperswaps". During
phase 3, synchronization of the packages is accomplished by
each processor shifting one half of its packages in a clock-wise
direction to its neighboring node in the ring topology. This is
called a half-spin. It is also during this phase that some global
communication is performed among all of the processors before
cycling back to phase 1 again.

Phase one of the algorithm performs local minimization whereas
phase two enables two packages to be brought together which
might be a great distance apart in the linear arrangement. These
two phases, even implemented collectively, do not eliminate
completely the local minima problem. Therefore, the half-spin
was introduced to give rise to new combinations that will
enhance the performance of local package exchanging and
hyperswapping. A half-spin results in each node retaining 50%
of its packages and receiving 50% new packages. Note this
algorithm could work without phase 2, but the other phases are
absolutely essential.

Our algorithm obtains a good mix of the packages. The simu-
lated annealing process surrounds the three phases of the algo-
rithm. The parallel PPP SA algorithm is described below:

1. Compute an initial package arrangement, p.

2. Choose the initial temperature parameter, T

3. Loop

4. Loop

5 Loop
Compute new state, p’ using package exchange.
p=1(p".p)
Until equilibrium

6. Loop
Compute new state, p’ using hyperswapping
p=1(p".p)
Until equilibrium

7. Shift clockwise half of the packages to the neighboring
Processor.

Until equilibrium
8. Decrease T
Until crystallization

function f(p’,p)

1. Ifp’ is a better package arrangement than p, then return(p’)

2. d = objective function (p’) - objective function (p)

3. return(p’) with probability minimum(1,exp(-d/T))
otherwise return(p)

4. end function

We have previously implemented the Traveling Salesman
Problem using simulated annealing. This work is described in
detail in [19]. Briefly this algorithm combines the strong points
of three recent implementations [2, 3, 9] with some new fea-
tures. Results show our algorithm to be vastly superior to these
three algorithms. The TSP solution from our algorithm repre-
sented a 44%, 56%, and 52% improvement over Felton’s algo-
rithm [9], modified Allwright’s algorithm [2], and the Braschi-
like algorithm [3], respectively, for a 320 city problem. An
improvement of 39%, 30%, and 55% occurred respectively, in
the case of a 1024 city problem. We will be comparing the
simulated annealing TSP results against the genetic algorithm
implementations of the same 320 and 1024 city problems.
Braschi [3] gives an excellent discussion of simulated annealing
applied to the Traveling Salesman Problem.

GENETIC ALGORITHMS

The genetic algorithm designed by Holland [13] is a robust
search and optimization technique based on the principles of
natural genetics and survival of the fittest. Genetic algorithms
use the laws of genetics and natural selection to guide a non-
deterministic search. In genetics, a set of chromosomes contain
all of the genes which form the "blueprint” for a species. In a

genetic algorithm, a chromosome is a string which encodes a
possible solution for a combinatorial problem. Instead of
deoxyribonucleic acid (DNA) and protein, the genes are made
up of bits, integers, reals, etc. The genetic algorithm has the
ability to create an initial population of feasible solutions, and
then recombine them in a way to guide its search to only the
most promising areas of the state space.

Genetic Algorithms are applicable to a wide variety of prob-
lems. In particular, genetic algorithms are a promising new
approach to global optimization problems. GAs have been used
successfully for a wide range of applications areas including (1)
scheduling: (facility, production, job, and transportation), (2)
design: (circuit board layout, communication network design,
keyboard layout, parametric design in aircraft), (3) control:
(missile evasion, gas pipeline control, pole balancing), (4)
machine meaning: (designing neural networks, classifier sys-
tems, learning rules), (5) robotics: (trajectory planning, path
planning), (6) combinatorial optimization: (TSP, bin packing,
set covering, graph bisection, routing, package placement), (7)
signal processing such as filter design, and (8) image processing
such as pattern recognition.

Genetic algorithms search through the solution space by emulat-
ing biological selection and reproduction. Each new generation
is created by a biased reproduction, the more "fit" members of
the population have a better chance of reproduction. The
parameters of the model to be optimized are encoded into a
finite length string, usually a string of bits. Each parameter is
represented by a portion of the string. The string is called a
chromosome, and each bit is called a gene. Each string is given
a measure of "fitness" by the fitness function, sometimes called
the evaluation or objective function. The fitness of a chromo-
some determines its ability to survive and repreduce offspring.
The "least fit" or weakest chromosomes of the population are
displaced by more fit chromosomes. Genetic algorithms are
blind without the fitness function. The fitness function drives
the population toward better solutions and is the most important
part of the algorithm. The fitness function is what distinguishes
one problem from another [17].

Genetic algorithms use probabilistic rules to evolve a population
from one generation to the next. The transition rules going from
one generation to the next are called genetic recombination
operators. These include Reproduction (of the more "fit"
chromosomes), Crossover, where portions of two chromosomes
are exchanged in some manner, and Mutation. Crossover com-
bines the "fittest" chromosomes and passes superior genes to the
next generation thus providing new points in the solution space.
Mutation is performed infrequently. A new individual (point in
the solution space) is created by altering some of the bits of an
individual. Mutation ensures the entire state space will eventu-
ally be searched (given enough time), and can lead the popula-

tion out of a local minima. Genetic algorithms retain informa-
tion from one generation to the next. This information is used to
prune the search space and generate plausible solutions within
the specified constraints [17]. Genetic algorithm packages for a
single processor have been available for only a few years.
GENITOR [28] and GENESIS [12] are the two such packages.
Both of these packages have been installed at our university and
have been used for developing sequential genetic algorithms.
Goldberg and others provide an excellent in depth study of
genetic algorithms [6, 7, 10, 24].

PARALLEL GENETIC ALGORITHMS

Several researchers have investigated distributed genetic algo-
rithms on various architectures [5, 11, 17, 20, 25, 26, 27, 30].
These investigations have shown that parallel genetic algorithms
work very well. Furthermore, parallel genetic algorithms have
proved very successful in solving some NP-complete problems
[4, 8,22, 29].

HYPERGEN is a distributed genetic algorithm for a hypercube
developed at our university [17]. HYPERGEN distributes the
initial population evenly among the processors. Each processor
(island) executes a sequential GA on its subpopulation perform-
ing crossover and mutation. HYPERGEN uses a one-at-a-time
reproduction scheme, similar to GENITOR, where only a few
members of the population are removed at each iteration. That
is, the reproduction cycle consists of selecting two "fit" chromo-
somes from the population pool, performing crossover and
perhaps mutation to yield a single offspring. The parents remain
in the population pool. The offspring is placed into the popula-
tion pool according to its fitness function, and the weakest
chromosome is removed. The population pool size remains
constant. After a prescribed number of reproductions, (called
the migration interval) the "fittest” chromosomes in each proc-
essor are exchanged among other processors introducing new
genetic material into each island. The amount of genetic mate-
rial to exchange is called the migration rate. This process
continues until the entire population stabilizes.

HYPERGEN is a modular collection of routines for generating
the initial population, evaluation function, selection (based on a
bias function), reproduction, mutation, migration interval,
migration rate and summary statistics. The sequential GA on
each processor and the periodic migration of genetic material
between processors is performed automatically for the user.

In the Package Placement Problem for n packages a chromo-
some is simply a permutation of the numbers 1..n representing
the number of the packages. The parallel genetic algorithm
begins by generating a random set of chromosomes representing
the initial population and distributing them evenly among all of
the processors. Each processor evolves their own subpopulation

by evaluating each chromosome, selection fit chromosomes for
crossover, perform occasional mutation, and in general mature
the population. After an appropriate number of generations
chromosomes are exchanged among the processors in a hyper-
swap fashion as described earlier. Only the "fittest” chromo-
somes migrate to new populations. The Traveling Salesman
Problem is implemented in a similar fashion. The chromosomes
are represented in the same way, as a permutation of n integers.
The only change between PPP and TSP is that a different evalu-
ation function is used to determine the fitness of each chromo-
some. Of course, each problem has its own set of unique
parameters that allows the genetic algorithm to perform better.

RESULTS AND CONCLUSIONS

Table I shows the results of our experiments for the Package
Placement Problem using 32, 64, and 128 packages. We tested
these problems using our parallel simulated annealing algo-
rithm, parallel genetic algorithm (HYPERGEN), and a sequen-
tial genetic algorithm developed using the GENITOR package.
For comparison purposes the optimum and worst package ar-
rangements are included. The parallel genetic algorithm per-
formed consistently better than the parallel simulated annealing
algorithm and the sequential genetic algorithm except in the 128
case. In this case GENITOR took over 10 hours to complete,
while HYPERGEN took only 2 hours and on a slower proces-
sor. We are convinced, given more time and fine tuning of the
parameters, that HYPERGEN would obtain the same or better
results than GENITOR. The sequential genetic algorithm given
enough CPU time out performed the parallel simulated anneal-
ing algorithm in the package placement examples.

Table II shows the results of our experiments for the Traveling
Salesman Problem for the parallel simulated annealing, parallel
genetic algorithm, HYPERGEN, and a sequential genetic algo-
rithm using GENITOR. Each algorithm was tested using data-
sets of 320 and 1024 cities. The cities were randomly placed in
a square of length 500 on a side. As in the package placement
problems, the parallel genetic algorithm performed consistently
better than the parallel simulated annealing algorithm and the
sequential genetic algorithm. Furthermore, the sequential genet-
ic algorithm given enough CPU time out performed the parallel
simulated annealing algorithm. Recall the parallel simulated
algorithm used here [19] was considerably superior to other
recently developed parallel simulated annealing algorithms.

All parallel problems were run on an iPSC hypercube using 32
processors. In the parallel simulated annealing algorithm for
both the PPP and TSP the initial temperature was set to 1.0. The
temperature decreased by 0.01 at each step until a final value of
0.01. Equilibrium is achieved when no changes occur during an
iteration or 10 iterations, whichever comes first. The parallel
genetic algorithm implementation for both the TSP and PPP

problems over all datasets used a population set of 100 per node,
with a migration interval of 5%, and a migration rate of 10%.
That is, each processor performs 5 (5% of 100) reproductions
before exchanging 10 (10% of 100) chromosomes with another
processor. The parallel and sequential genetic algorithms both
used the edge recombination crossover operator [29] for the
Traveling Salesman Problem.

In the sequential GA (GENITOR) Package Placement Problem
we tested several crossover functions: an edge recombination
crossover adapted for the Package Placement Problem, PMX,
position, cycle, and order2. These functions are described in
[30]. We tested each of these crossover functions on the 32, 64,
and 128 package problems. Results are shown in Table III. In
every case the edge recombination crossover function yielded
better results than any of the others. For the 32, 64, and 128
package problems the best results were 5712, 44,704, and
355,072, respectively. These are the values reported in Table I
for GENITOR.

In Table III(a) for 32 packages, the sequential GA using the
edge recombination crossover operator converged to the opti-
mum solution after 32,000 trials. The results using the other
crossover operators after 32,000 trials are given for comparison.
In addition, we allowed the other crossover functions to contin-
ue to 100,000 trials to see how much they were able to improve.
Notice even after 100,000 trials none of the other operators were
able to match the edge recombination crossover operator after
only 32,000 trials.

Similarly in Table III(b) for 64 packages, the edge recombina-
tion crossover operator converged to the optimum solution after
166,000 trials. We allowed the other crossover operators to con-
tinue to 600,000 trials and noted their results. Again even after
600,000 trials none of the other crossover operators could match
the edge recombination crossover operator after only 166,000
trials. The same pattern is repeated again in Table III(c) using
128 packages. The edge recombination crossover operator was
the best performer. Recall a trial is not a generation. During
one trial two fit parents produce one child. All three chromo-
somes are placed into the population pool displacing the weak-
est chromosome.

Notice in all cases the CPU times do not differ very much from
one crosscver function to another. The edge recombination
function has some initial one time expense to set up a table of
values. This is the reason for the poor CPU performance of
edge recombination operator compared to the others in Table
III(a) for 32,000 trials. However, this one time expense paid for
itself after 100,000 trials where the edge recombination CPU
time was very competitive.

There are some significant differences between genetic algo-
rithms and simulated annealing that may account for the superi-
or performance of the parallel genetic algorithm for these types
of problems. First, simulated anmealing begins with one feasible
solution to manipulate over and over, while the genetic algo-
rithm has a population size in the hundreds or thousands. The
temperature schedule is very sensitive and difficult to get just
right for optimal performance in simulated annealing. In a dis-
tributed SA, since one feasible solution is distributed over
several processors, it is very important which perturbation func-
tion to use so that each processor can improve their portion of
the solution with out undoing optimization work performed by
other processors. In other words, a series of local optimizations
may not always lead to a global optimization for some perturba-
tion functions. Parallel genetic algorithms, on the other hand,
partition the population into separate islands for independent
development, then exchange "fit" genetic material. This lends
itself naturally to distributed processing. Furthermore, we have
found it fairly easy to fine tune the parameters that drive a paral-
lel genetic algorithm for near optimal performance, that is,
population size, migration rate, and migration interval. We
found the genetic algorithm parameters were easier to fine tune
for good performance compared to the parameters that drive a
parallel simulated annealing algorithm.

FUTURE RESEARCH ISSUES

The parallel genetic algorithm out performed the parallel simu-
lated annealing algorithm for the problems tested. This does not
mean we should give up on simulated armealing. HYPERGEN,
while continuing to change, is still a more mature package
compared to our newly developed parallel simulated annealing
algorithm. Qur implementation of the parallel simulated anneal-
ing algorithm is still being enhanced, and we intend to continue
to develop additional options to the package. These options
include allowing for other perturbation functions such as Single
Move, where a single randomly selected item is moved to
another location, and Cycle of Three, where three randomly
selected items are exchanged in a three way cycle, etc. These
perturbation functions as well as others are described in detail in
[23]. In addition we are implementing what is called the se-
quence heuristic {23] which means we accept a new solution p’
with h(p’) >= h(p) if the last k perturbations on p failed to
generate a p° with h(p’) < h(p), where h is the objective func-
tion. That is, if we failed to find a better solution in k tries, we
will accept the next solution, whatever it is. The parameter k is
adjusted with temperature, and is a user supplied parameter. In
addition, the current hyperswap is quite simple, and we intend to
develop a more effective version.

ACKNOWLEDGMENTS

This research has been partially supported by OCAST Grant
ARO0-038. The authors also wish to acknowledge the support of
Sun Microsystems, Inc.

REFERENCES

(1]

(2]

(3]

[4]

[5]

(6]

7

(8] -

9]

[10]

[11]

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures
and Algorithms, Addison-Wesley, 1987.

J. Allwright and D. Carpenter, A Distributed implementa-
tion of Simulated Annealing for the Traveling Salesman
Problem, Parallel Computing 10 (1989) 335-338.

B. Braschi, Solving the Traveling Salesman Problem
Using The Simulated Annealing on a Hypercube, Pro-
ceedings of the Fourth Conference on Hypercubes,
Concurrent Computers, and Applications, March, 1989.

D.E. Brown, C.L. Huntley and A.R. Spillane, "A Parallel
Genetic Heuristic for the Quadratic Assignment Problem”,
Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, 1989.

J. Cohoon, S. Hegde, W. Martin, and D. Richards, "Punc-
tuated equilibria: a Parallel Genetic Algorithm, Proceed-
ings of the Second International Conference on Genetic
Algorithms, Lawrence Erlbaum, 1987.

L. Davis, ed., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

L. Davis, ed., Genetic Algorithms and Simulated Anneal-
ing, Morgan Kaufmann Publisher, 1987.

K.A. De Jong and W.M. Spears, "Using Genetic Algo-
rithms to Solve NP- Complete Problems", Proceedings of
the Third International Conference on Genetic Algo-
rithms, June, 1989, pp. 124-132.

E. Felton, S. Karlin and S. Otto, The Traveling Salesman
Problem on a Hypercubic, MIMD Computer, Proceedings
of the 1985 International Conference on Parallel Process-
ing, August, 1985.

D.E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, 1989.

M. Gorges-Scheuter "ASPARAGOS: A Asynchronous
Parallel Genetic Optimization Strategy", Proceedings of
the Third International Conference on Genetic Algo-
rithms, Morgan Kaufmann, 1989.

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

J. Grefenstette, GENESIS, Navy Center for Applied
Research in Artificial Intelligence, Navy research Lab.,
Wash. D.C. 20375-5000.

J.H. Holland "Adaptation in Natural and Artificial Sys-
tems”, Ann Arbor: The University of Michigan Press,
1975.

E. Horowitz and S. Sahni, "Fundamentals of Computer
Algorithms", Computer Science Press, 1984,

T.C Hu, "Combinatorial Algorithms", Addision-Wesley,
1982.

S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimiza-
tion by Simulated Annealing, Science, May, 1983, vol.
220, pp 671-680.

L. Knight and R. Wainwright, "HYPERGEN: A Distribut-
ed Genetic Algorithm on a Hypercube”, submitted.

L. Kronsjo, "Computational Complexity of Sequential and
Parallel Algorithms", John Wiley, 1985.

D.R. Mallampati, P.P. Mutalik and R.L. Wainwright, "A
Parallel Multi-Stage Implementation of Simulated Anneal-
ing for the Traveling Salesman Problem", Proceedings of
the Sixth Distributed Memory Computing Conference,
April 28 - May 2, 1991.

B. Manderick and P. Spiessens, "Fine-Grained Parallel
Genetic Algorithms", Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, Morgan
Kaufmann, 1989.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, E. Teller, Equation of State Calculation by Fast
Computing Machines J. Chem. Phys. vol. 21, 1953, p. 1087.

H. Muehlenbein, "Parallel Genetic Algorithms, Population
Genetics and Combinatorial Optimization”, Proceedings
of the Third International Conference on Genetic Algo-
rithms, Morgan Kaufmann, 1989.

S. Nahar, §.S. Sahni, and E. Shragowitz, "Simulated
Annealing and Computational Optimization", Infernation-
al Journal of Computer Aided VLSI Design, vol. 1, pp. 1-
23, 1989.

G. Rawling, ed., Foundations of Genetic Algorithms,
Morgan Kaufmann Publishers, 1991.

[25]

[26]

(27]

(28]

P. Spiessens and B. Manderick, "A Massively Parallel
Genetic Algorithm Implementation and First Analysis”,
Proceedings of the Fourth International Conference on
Genetic Algorithms, Morgan Kaufmann, 1991.

T. Starkweather, D. Whitley, and K. Mathias, "Optimiza-
tion Using Distributed Genetic Algorithms," in Parallel
Problem Solving from Nature, ed. H. Schwefel and R.
Maenner, Springer Verlag, Berlin, Germany, 1991.

R. Tanese, "Distributed Genetic Algorithms, Proceedings
of the Third International Conference on Genetic Algo-
rithms, ed.].D. Schaffer, Morgan Kaufmann, 1989, pp.
434-439.

D. Whitney and J. Kauth, GENITOR: A Different Genetic
Algorithm, Proceedings of the Rocky Mountain Confer-
ence on Artificial Intelligence, Denver, Co., 1988, pp.
118-130.

Algorithm Number of Packages
32 64 128
Parallel SA 5884 | 50462 | 397,940
Parallel GA 5712 | 44,704 | 375,556
GENITOR 5712 | 44,704 | 355,072
The Optimum 5712 | 44,704 | 353,600
The Worst 10912 | 87,360 | 699,008

Table I: Results of the Package Placement Problem

Algorithm Number of Cities
320 1024

Parallel SA 29339 | 91323
Parallel GA 15308 | 51,784

GENITOR 18,676 | 88,436

Table II: Results of the Traveling Salesman Problem

[29]

(30]

D. Whitney, T. Starkweather, and D. Fuquat, "Scheduling
Problems and Traveling Salesman: The Genetic Edge
Recombination Operator”, Proceedings of the Third Inter-
national Conference on Genetic Algorithms, June, 1989.

D. Whitley and T. Starkweather, "GENITOR II: A Dis-
tributed Genetic Algorithm, Journa!l of Experimental and
Theoretical Artificial Intelligence, 2(1990) 189-214.

Crossover Number of Trals
Algorithm 32,000 100,000
Solution | CPU Sec. | Soluton | CPU Sec.

Edge 5712 190 5712 494
PMX 5854 163 5854 531
Position 6060 145 5954 502
Cycle 6168 172 6004 517
Order2 6340 167 6122 490

Table III(a): Sequential GA for the 32 Package Placement
Problem Using Different Crossover Functions

Crossover Number of Trals
Algorithm 166.000 600,000
Solution | CPU Sec. | Soluton | CPU Sec.

Edge 44 704 2,308 44,704 7,796
PMX 47,147 2,414 45,868 8,309
Position 47,420 2,006 45,908 7,083
Cycle 48,428 1,954 46,468 6,968
Order2 48,524 2236 46,344 7,756

Table III(b): Sequential GA for the 64 Package Placement
Problem Using Several Crossover Functions

Crossover Number of Trials
Algorithm 600,000 800,000
Solution | CPU Sec. | Soludon | CPU Sec.

Edge 355,072 32,419 355,072 37.827
PMX 367,550 33,139 366,732 39,887
Position 376,962 25,400 366,930 29,040
Cycle 370,942 28,159 366,808 30,247
Order2 380,526 25,280 365,484 29,032

Table II(c): Sequential GA for the 128 Package Placement
Problem Using Several Crossover Functions

