Proceedings of the 1990 ACM/IEEE Symposium on Applied Computing
April, 5-6, 1990, pp. 85-91.

A Functional Program Describing a Simple Reservoir Model and Its Potential for
Parallel Computation

Rex L. Page!
Marian E. Sexton!
Roger L. Wainwright'2

tAmoco Production Company, Research Center
?Department of Mathematical and Computer Sciences
University of Tulsa

ABSTRACT

This paper presents results using a functional programming lan-
guage, Miranda, to solve a simple reservoir modeling problem.
The algorithm uses Miranda’s functional form to determine a
parallel decomposition of a reservoir modeling problem. There
is discussion on discerning the parallel decomposition as well as
the ease of specifying the problem in functional form. Finite ele-
ment discretization of a reservoir model yields linear equations
of the form Ax="b, where A is a large, sparse, banded matrix,
and x and b are dense vectors. Each step of the simulation uses
the Conjugate Gradient method to solve the sparse linear sys-
tem. Matrices are represented as quads in Miranda to take ad-
vantage of their sparsity. Vectors are represented as lists of
numbers. Other data structures yielded worse performance.
The paper presents results of simulations for reservoirs which
yield sparse matrices up to size 4096 x 4096 and estimates for
matrices up to size 262,144 x 262,144,

Keywords:

Functional Programming, Miranda, Parallel Computation,
Sparse Linear Systems, Reservoir Modeling

BRIEF OVERVIEW OF THE RESERVOIR MODEL

The test problems used in this paper arise from a parabolic dif-
ferential equation which is the two-dimensional, single-phase
diffusion equation from petroleum reservoir simulation. The
partial differential equation is approximated in space using a
discrete, irregular, block-centered grid. This approximation
leads to a five—point difference equation using central differ-
ences to approximate the space derivatives and a backward dif-
ference to approximate the time derivative. A similar approxi-
mation leads to a nine-point discretization. The vast majority
of reservoir simulations are two-phase, non-linear non-sym-
metric models. This paper considers the more basic single
phase, linear problem. The study investigated square reservoirs

of size R = 2¥ which yielded, in each case, a five-banded,
sparse, symmetric, positive definite linear system to solve of size
N = R forK = 1,2,... The particular reservoir model used in
this paper involves 38 time steps. Thus, during the simulation, it
was necessary to solve 38 different linear systems using, in par-
ticular, the Conjugate Gradient method to determine the solu-
tion. Wainwright [7] provides additional information on this
particular reservoir model. A more detailed description of the
Conjugate Gradient method as applied to parallel processing is
given by Aykanat [1], and by Wainwright [8].

BRIEF OVERVIEW OF THE CONJUGATE GRADIENT
METHOD

The simple reservoir simulation model used the Conjugate Gra-
dient method, as described in Reference 1. This implementa-
tion is identical to the traditional Conjugate Gradient method
except for the reorganization of some of the calculations. The
reorganization of calculations has the benefit of requiring fewer
communication steps when using multiple processors compared
to the traditional implementation of the algorithm. In general,
the problem is to solve the linear system, Ax=b. The Conju-
gate Gradient method, as implemented, follows:

Step 0. Initially choose xp and letry = pp = b- Ax
Then compute <rg,ry>. Then,

Fork = 0,1,2...

1. form qx = Apy

2. form <pyqe> and <qqc>

3 @ oy = <r>/<prgp>
(®) Bx = (< Qquqx>/<peqx>) -1
(©) <TispTier> = By<Tel>

4. (@) reer
(0) Xu+1

(©) Pr+1 = Txt1 + Bupx

Iy = Ok

Xy + Pk



Here ry is the residual vector associated with the approximate
solution vector, Xy, at each iteration. The definition of ryis b -
Ax, and it must be null when xy is the exact solution. Thus, a
suitable criterion for halting the iterations is when
[<rer>/<bb>]"? < € where € is very small. In all cases, a
tolerance of e = 1077 using 16 digit (double precision) arithme-
tic was used. pg represents the direction vector of the gradient at
the kth iteration, and < > denotes the inner product of two
vectors.

MIRANDA IMPLEMENTATION OF THE RESERVOIR
MODEL

Throughout this paper, the authors assume the reader is famil-
iar with both the functional style of programming similar to that
detailed in Bird and Wadler’s functional programming text [2],
and, in particular, the functional programming language, Mi-
randa, written by David Turner [5,6].

Data Structures Used in this Implementation

Each iteration of the Conjugate Gradient method requires the
following operations. Note in this algorithm there are no ma-
trix-matrix operations.

3 vector-vector dot products

2 vector-vector additions

1 vector-vector subtraction

3 scalar-vector multiplications
2 matrix-vector multiplications
2 scalar divisions

2 scalar multiplications

1 scalar subtraction

The sparse matrices arising from the difference equations in the
problem range in size from approximately 100 x 100 to 100,000 x
100,000. The quad data structure emits an economical represen-
tation of these matrices. (Burton and Kollias and also Wise and
Franco [3,9,10] elaborate on the quad data structure for sparse
matrices.) The vector abstract data type shown below (in Miran-
da) is a tuple where the first value indicates the vector length,
and the second represents an implementation of a vector as a
list of numbers. The abstract data type for a matrix is also a tu-
ple where the first value is the total number of entries in the ma-
trix, and the second represents the matrix as a quad. For this
problem, representing vectors as lists of numbers proved to be
more effective than a quad-like representation.

vector = = (num, [num])
matrix = = (num, quad)
quad = Quad quad quad quad quad | Diag num

The size of a matrix, represented in quad form, must be 29 by 29
ford = 0,1,2... If a matrix has a constant value along the main
diagonal and all off-diagonal values equal to zero, then a single
value represents the matrix, that of the main diagonal. A value
of zero, in this case, represents a zero matrix. If the matrix is not
of this form, then the data structure divides the matrix into four
subtrees of equal size, 29~V by 2¢-Y, The order of the quadrants
is, left to right, northwest, northeast, southwest and southeast.
In this way, each matrix has a unique representation. The quad
representation exhibits a savings in memory since the zero val-
ues can be compressed into Diag 0°s. Furthermore, it represents
a savings in time because operations which use Diag num are
extremely efficient. The size of the matrix that Diag num repre-
sents depends on the context in which it appears. An example
quad expansion is given below. Figure 1 depicts an 8x8 banded

matrix along with the corresponding unique quad representa-
tion.

Examples:

Diag 3 represents and

000
300
030
003

oo oW

Quad (Diag 3 )
(Quad (Diag 0) (Diag 1) (Diag 0) (Diag 0))
(Quad (Diag 0) (Diag 0) (Diag 2) (Diag 0))

)

(Diag 3

represents 300 1
0300
0030
2003

The study considered and tested other data structures to repre-
sent matrices. For example:

quad = Quad quad quad quad quad |
Scalar num | Zero

In this data structure, Scalar is always a single digit, and Zero
represents a block of any size of all zeros. Using this data struc-
ture, with the addition of a third construct, the CPU perform-
ance degraded 25 to 30%. This degradation in performance is
probably attributable to the extra case check necessary when us-
ing both Scalar num and Zero instead of the single check re-
quired when using Diag num, the combination of the two. Fur-
thermore, the particular reservoir model simulated yields diago-
nal bands of constant values which favors the Diag num version.

This investigation considered several different data structures
for vectors other than lists of numbers. Wise [9,10] suggests the
use of a sparse matrix to represent a vector. This sparse matrix
contains all zero values on the off diagonals with the values of
the vector itself placed on the main diagonal. Wise's method
then converts the matrix representation of the vector to a quad
form. In this way, Wise proposes the quadtree as a uniform data
structure to represent every object: scalar, vector, and matrix.
However, Wise was primarily dealing with problems which con-
tain matrix-matrix and matrix-vector operations and for these
operations this data structure works quite well. In the current
simulation, which has virtually all vector-vector and scalar-vec-
tor operations, only two matrix-vector operations and no ma-
trix-matrix operations, Wise’s data structure is not practical

Further, the study considered two different binary tree struc-
tures as the data structure for representing vectors (as an alter-
native to lists of numbers). A bintree, in the following Miranda
definition, represents a vector with a binary tree in which all of
the valid numerical data are in the leaves of the tree.

bintree :: = Bintree bintree bintree | Scalar num

The second binary tree representation of bintree contains valid
numerical data in each node of the binary tree (both leaf and
internal nodes alike). The Single construct in the following de-
notation represents a binary tree with only one child.

bintree :: = Bintree num bintree bintree |
Scalar num | Single num bintree

The CPU times for the reservoir model simulation were about
the same using either of the bintree representations for vectors.
The first bintree definition requires about twice as much storage
as the second definition, however, it requires less checking dur-
ing processing. Thus, it is not surprising that the CPU times



were about the same. However, both of these binary tree repre-
sentations are three to four times slower than the lists of num-
bers representation. Since most of the vector operations in this
simulation are vector-vector or scalar-vector operations this is
not unexpected. The binary tree definitions use more storage
and require more execution time dividing and processing vec-
tors than do simple lists of numbers. If most of the operations
were matrix-vector operations, however, then perhaps one of
the bintree representations would demonstrate better perform-
ance than the lists of numbers. This analysis assumes a sequen-
tial processor. At this time, Miranda is in use only on sequential
processor machines. With a multiprocessor system, the binary
tree representation may prove to be superior because of the di-
vide and conquer strategy which is conducive to parallel pro-
cessing,

The Conjugate Gradient Method in Miranda

The Miranda function CONJ_GRAD solves the linear system
Ax = b using the Conjugate Gradient method. At the time the
function CONJ_GRAD is called, the matrix, A, is already in
quad form. The last parameter to CONJ_GRAD, CNT, gives
the number of iterations required for convergence of the linear
system. The Miranda implementation of the Conjugate Gradi-
ent method is given below. Notice how the Miranda implemen-

tation of the Conjugate Gradient method closely resembles the -

mathematical specification shown previously, thus demonstrat-
ing one of the primary advantages of specifying a problem in
functional form, that of its simplicity.

>conj_grad :: matrix- > iter_solution->
iter_solution

\

>conj_grad a (Iter_sol x r p cnt)
= until converge
nextiter (Iter_sol x r p cnt)
where
converge (Iter_sol x r p cnt)
= 1T < €ps
where
= vvdotrr
eps = .000001
nextiter(Iter_sol x r p cnt)
= (Iter_solx ' p’ cntl)
where
cntl = cent + 1
= vvdotrr
x = vvadd x (svmult alpha p)
r = vvsub r (svmult alpha q)
P’ = vvadd r (svmult beta p)
alpha = 11/ pq
beta = ((alpha * qq)/pg)-1
pq = vvdotp q

qq = vvdotqq
q = mvmultap

VVVVVVVVVVVVVVVVVVVVY

The Reservoir Simulation Driver Functions

To execute the reservoir simulation, the user assigns the desired
value for LIN_SYS_SIZE and then types “restest”. The func-
tion FORMAT displays the results of the simulation. The func-
tion SOLUTION strips off and keeps only the RESULT of
RES. RES contains the accumulated results of the simulation
after applying the function LIN_SYS SOLV repeatedly
through a sequence of time steps determined by
TIME_SEQ_LIST. In the simulation, time begins at zero and
continues through four different changes in time steps indicated
by the variable TIME_SEQ_LIST until time = 10. Time unit
measurement is in days. TIME_SEQ_LIST specifies that mea-
surement of the reservoir begins at time 0 and increments by

.001 of a day, the delta time step, until time = .009, time then
increments by .01, the new delta time step, until time =.09, and
so forth until the delta time step is 1 unit and time = 10.

> restest i [char]

>restest = header + + ‘“\n” + +
> format (reverse

> (solution (res)))

>solution :: (vector,num,[res_tuple],num)
> -> [res_tuple]
> solution (soln,cnt,result,ctime) = result

>res i (vector,num,[res_tuple],num)
>res = foldl lin_sys_solv

> (solnx, 0, [], 0)

> time_seq_list

> time_seq_list :: [steps]
>time_seq_list = [Step_seq .001.0099,

> Step_seq .01 .0999,
> Step_seq .1.999,
> Step_seq 1 9.999]

Linear System Solver (LIN_SYS_SOLV)

The main diagonal of the matrix changes whenever the size of
the time step changes, i.e., when the delta time step changes
from .001 to .01, again when it changes from .01 to .1, and so
forth.

The function LIN_SYS_SOLV computes the new matrix.
>lin_sys_solv

> (vector,num,[res_tuple],num)->

>  steps ->

> (vector,num,[res_tuple],num)

>lin_sys_solv (solnx,cnt,result,ctime)

> (Step_seq dt tlimit)

> = pickpart

> (timesteps ((Prob a b),

> (Tter_sol x r p cnt),

> solnx,result,ctime,

> (Step_seq dt tlimit)))
> where

> a = mmadd (upper_band 0 main_diag)
> resShand

> main_diag

> = map2 (+ ) const_alist

> (rep lin_sys_size

> (vvalue/dt))

> x = solnx

> r = vvsub b (mvmult a x)

> p=

> b = apply f newb (lin_sys_size div 2)
> where

> fx=x-ff*q

>

newb = svmult (vvalue/dt) solnx

>p1ckpart (problem,iter_solution,

vector,
> [res_tuple],num,steps)- >
> (vector,num,res_tuple],num)

>p1ckpart(lm _sys,(Iter_sol x r p cnt),
solnx,result,ctime,time_seq)

> = (solnx,cnt,result,ctime)

> iin_sys_size  num

>lin_sys_size = 1024



Timesteps

Each time the simulation increases in time but the delta time
step is constant, the algorithm solves a new linear system. How-
ever, while the delta time step is constant, the matrix as gener-
ated by LIN_SYS_SOLV remains constant. The only change to
each equation in the linear system is on the right hand side.
TIMESTEPS generates the new b vector (for Ax = b) each
time. Within the function, TIMESTEPS, is the call to the func-
tion CONJ_GRAD, the linear system solver using the Conju-
gate Gradient method described in the previous section.

> timesteps :: (problem,iter_solution,
vector,[res_tuple],
num,steps) - >

(problem,iter_solution,
vector,[res_tuple],
num,steps)

VVVVYV

> timesteps (lin_sys,sol_pieces,solnx,
result,ctime,time_seq)
= until timedone
timeunit (lin_sys,sol_pieces,
solnx,result,ctime,
time_seq)
where
timedone(lin_sys,sol_pieces,solnx,
result,ctime,
(Step_seq dt tlimit))
= ctime > = tlimit
timeunit ((Prob a b),
(Iter_solx r p cnt),
solnx,result,ctime,
(Step_seq dt tlimit))
= ((Probab’),
(Iter_sol X' r' p’ ent),
solnx’,result’,ctime’,
(Step_seq dt tlimit))
where
result’
= Result_tuple ctime count
(middlex vect ) :
result
where
(count, vect) = newx
middlex vect
= (subscript
vect
(lin_sys_size div 2)) -
dpp
Newx
= pressure
(conj_grad
a
(Tter_sol x r p cnt))
solnx’ = vect
where
(count, vect) = newx
pressure (Iter_sol x r p cnt)

VVVVVVVVVVVVVVVVVVVVVVVYVVVVVVVVVVYVVVVYVVYVVVVVVVVVVY

= (cnt, x)
ctime’ = ctime + dt
X = solnx’
r = vvsub b’ (mvmult a x)
¢ — I;
b = apply f newb
(lin_sys_size div 2)
where

> fx=x-ff*q

> newb = svmult (vvalue/dt)

> vect

> where

> (count, vect) = newx

The current research investigated reservoirs of size R = 2K
yielding matrices of size N = R?, for K = 1.6. All simulations
were run on a Sun4 workstation using release 2.009 (November
14, 1989) of Miranda. Table I shows the test results for these
problems, giving the CPU time in seconds, and the total number
of Conjugate Gradient iterations required to solve all of the sys-
tems of equations. In addition, Table I reports the number of
function reductions, claims, and garbage collections that Miran-
da performed for each reservoir problem. In all cases reported
in Table I, the heap size used in Miranda was 5 million cells.
This is the maximum heap size that will fit in main memory.
Each cell in Miranda is 9 bytes of memory. The maximum al-
lowable heap size for Miranda in our present system is 20 mil-
lion cells (180 megabytes).

The reservoir for K = 7 was possible to model by utilizing the
maximum heap size of 20 million cells. This did not run to com-
pletion due to the long execution time. However, partial execu-
tion of this model revealed only 16% CPU utilization. The low
utilization was due to the large amount of time spent paging in
and out of virtual memory. Reservoirs for K = 8 and larger
were unable to complete due to insufficient heap space. Table IT
gives estimates of the CPU times required to model reservoirs
for K = 7 through K = 9. The ratio of CPU times for succes-
sive K values in Table I is approximately a factor of 6. Based on
this, Table II assumes a crude estimate of a factor of 6 in CPU
times for each additional K. Furthermore, because of 16% CPU
utilization for these large problems, the table employs an addi-
tional factor of 6 to estimate wall clock time from CPU time.

The limit on the size of the reservoir models that the current
Miranda system can simulate is relatively modest, and the
length of the execution times is rather large. This is even more
evident in Table IL. The current reservoir model is relatively
simple. An “industrial size” reservoir simulation involving more
complexity will increase the CPU time by a factor of 10. Fur-
thermore, the model needs to be at least 512 x 512 grid blocks.
Also, the current Miranda system is interpreted and not com-
piled. A compiled version of Miranda is expected within the
next 12 months, and is conservatively estimated to be 30 times
faster than the current interpreted system. Thus, using K = 9in
Table II as a basis, a large realistic model using a compiled ver-
sion of Miranda will take approximately 30 days CPU time, and
180 days wall clock time using the current sub-megaflop Sun
hardware. However, parallel processors running at 10 gigaflops
are now commonplace. This means that a realistic model based
on this approach with a modern parallel computing system
could easily perform the computation for a realistic reservoir
model in less than 5 minutes.

The following is an estimate for the memory requirements of a
K = 9reservoir model The largest model that could run in the
present memory system was K = 7, which represents a matrix of
size N = 16,384. The matrix has five bands (each approximately
size N) plus an additional four utility vectors used in the linear
system solver (each, also, approximately size N). Assume fur-
ther that this model used all of the available 180 Megabyes of
memory. On this basis, the memory requirements for K = 9 (N
is 262,144) would be approximately 2.9 gigabytes. Current paral-
lel computers support ten to a hundred times more memory
than this requirement.



PARALLEL SPECIFICATION OF THE RESERVOIR
SIMULATION ALGORITHM

This reservoir simulation deals primarily with a sequence of lin-
ear systems to solve. Thus, the study focused its emphasis on
the parallelization of the linear system solver, CONJ_GRAD.
Each iteration of the Conjugate Gradient method requires vari-
ous vector-vector, scalar-vector, and matrix-vector operations.

One of the major advantages of functional programs is their po-
tential for parallelism. Furthermore, the evaluation of an ex-
pression cannot have side effects in a functional language. Thus,
the evaluation of subexpressions can be in any order or it can be
in parallel. In this application, quadtrees represent matrices, as
described earlier. Vectors, in this application, are represented in
Miranda as lists of numbers. Scalar-vector and vector-vector
operations are straight forward and relatively inexpensive. The
most time consuming portion of the Conjugate Gradient linear
system solver is the matrix-vector multiply operation. During
matrix-vector multiplication, the program decomposes the vec-
tor (list) into two equal parts corresponding to the natural ma-
trix decomposition into quads. As the further decomposition of
the matrix takes place, the program also performs the corre-
sponding decomposition of the subvector. Each partition is a

separate and independent process. Review the Miranda

MVMULT function shown below which illustrates automatic
decomposition depending on the sparsity of the matrix.

MVMULT MATRIX VECTOR MULTIPLY PRODUCING
A VECTOR (The matrix must already be in quad form)

>mvmult (sizem, m) (lenv, v)

> = makevect (mvmult' m v),

> sizem = lenv

> = error

> “vector & matrix of different sizes”,
>

otherwise

>mvmult’ (Diag 0) vect = rep (# vect) 0
>mvmult’ (Diag a) [v] = [a*v]
>mvmult’ (Diag a) vect = [a*y | y + vect]
>mvmult’ (Quad nw ne sw se) v
=v,v=[0]y V]
= firsthalf + + secondhalf, otherwise
where
firsthalf
= map2 (+ ) (mvmult’ nw vl)
(mvmult’ ne v2)
secondhalf
= map2 (+) (mvmult’ sw v1)
(mvmult’ se v2)
take ((#v) div2) v
drop ((#v) div2) v

vl
v2

VVVVVVVVVVY

i u

>makevect v = (#v, v)

The list representation of vectors and subsequent decomposi-
tion into two equal parts is logically identical to a binary tree
representation. The study found no benefit, however, in repre-
senting vectors as a matrix type or as a binary tree type in Mi-
randa. As discussed earlier, a higher CPU time resulted from
each of these cases compared to the list representation of vec-
tors.

The property of quadtrees is particularly valuable for matrices
with regular patterns of non-zero entries, especially for sparse
or banded matrices. Even if a banded matrix has pockets of
non-zero entries elsewhere in the matrix, the quadtree repre-
sentation will decompose automatically and efficiently, taking

advantage of any sparse area in the matrix, wherever it may be.
Matrices of this form are common place in reservoir modeling.

The quadtree decomposition of a dense matrix results in a dis-
tribution of the matrix into a block matrix format. Elster and
Reeves [4] studied several matrix-matrix and matrix-vector op-
erations for matrices decomposed in block format. In this block
decomposition, the processors are arranged into a two dimen-
sional grid, and the blocks of the matrix are distributed as evenly
as possible across the processors. Elster and Reeves also studied
these operations on matrices decomposed using the split-by-co-
lumn format. The split-by-column format distributes columns
of the matrix evenly over the available processors. They consid-
ered a two-dimensional grid topology as well as a two dimen-
sional nearest neighbor grid topology for a hypercube for imple-
menting both the block format and the split-by-column format.
Their results for matrix-vector multiplication show that the
block matrix format was superior to the split-by-column format
in computation, as well as communication, for the given topolo-
gies. This makes the quadtree representation (a block format)a
cost effective representation for matrices.

The decomposition of these basic operations for the Conjugate
Gradient method is not the same as the implementation given
by Aykanat and others [1]. Aykanat specifically targeted his im-
plementation for a hypercube multiprocessor system. The de-
composition presented here (using quads), did not take into
consideration the nature of the matrix. Since the matrices are
sparse, the quad representation which collapses blocks of zeroes
into a single value will be very efficient. Moreover, the quad re-
presentation works on dense matrices and, in an adapted form,
on non-square matrices, as well. Furthermore, the quad repre-
sentation does not pertain to any specific target hardware; rath-
er, it represents a general decomposition of the problem for re-
finement later on a target hardware. Aykanat. on the other
hand, considered the nature of the matrix in his decomposition
of the problem as well as the target hardware. Aykanat knew
that he was dealing specifically with nine banded matrices.
Knowing that, he stored the bands of the matrix into nine vec-
tors with each band distributed evenly across all of the proces-
sors. Since the bands are not all consecutive in the matrix (ie.,
these matrices have bands of zeroes intermixed with non-zero
bands) it was necessary to establish the processors of the hyper-
cube in a ring topology and pass part of the vectors of informa-
tion between neighboring processors in the ring. Wainwright [8]
established a similar process for a five banded system using the
same reservoir model implemented in this paper. Adapting the
quad representation to a target hardware is easily done. The
authors maintain that the parallel decomposition of the prob-
lem, independent of target hardware, is more readily visible
when specified in a functional form.

SUMMARY, CONCLUSIONS AND FURTHER RESEARCH
DIRECTIONS

The work reported in this paper represents the first part of a two
part research project. The ultimate goal of the overall project is
to use a functional language to solve a large “industrial size”
project; i.e., reservoir modeling, in this case. The authors con-
tend that functional programming has enormous benefits not
only in the ease of specifying a problem, but also in the potential
for parallel decomposition of the problem. To date, the authors
are not aware of any large scale problem being implemented us-
ing a functional language, such as Miranda.

The first part of the project reported here implemented and
tested a simple reservoir model (prototype) using the functional
programming language, Miranda. Due to memory limitations
and CPU times required, the size of the reservoirs tested was
relatively small. To overcome these limitations, a parallel pro-
cessing system of at least 10 gigabytes of memory and a process-
ing rate of at least 1 gigaflop is required. Such a system would



allow the investigation of even more detailed models; in addi-
tion to the simple model used here. The study uses the quad
data structure to represent matrices, taking advantage of any
sparsity in the matrices and it is easily parallelized. The re-
search considered several data structures to represent vectors
choosing lists of numbers because it is more efficient for a single
processor; however, a binary tree is more conducive for parallel
processing.

The authors have had experience implementing this model in
both a functional language, Miranda, and in a procedural lan-
guage, FORTRAN. Specification of the problem was much eas-
ier in Miranda than it was in a procedural language. An exami-
nation of the similarity of the Miranda specification of the Con-
jugate Gradient method to the mathematical specification illus-
trates this point. This specification is much more difficult to de-
tail in FORTRAN. The abstract data type, MATRIX was im-
plemented using quads and the abstract data type VECTOR
was implemented as a list of numbers. These abstract data types
allowed the problem to naturally decompose into parallel parts
for execution by a parallel multiprocessor.

References

1. Aykanat, C.,, Ozguner, E, Ercal, E and Sadayappan, P. “It-

erative Algorithms for Solution of Large Sparse Systems -

of Linear Equations on Hypercubes”, IEEE Transactions
on Computers, Vol. 37, No. 12, Dec., 1988.

2. Bird, Richard and Wadler, Philip. “ntroduction to Func-
tional Programming”, Prentice Hall, Englewood Cliffs,
N.J., 1988.

3. Burton, F Warren and Kollias, J.G. “Functional Program-
ming with Quadtrees”, IEEE Software, Jan., 1988, pp.
90-97.

23000000
12300000
01230000
00123000
00012000
00000200
00000020
00000002
Fig. 1a

Sparse Matrix

10.

Elster, A.C. and Reeves, A.P “Block-Matrix Operations
Using Orthogonal Trees”, Proceedings of the Third Con-
ference on Hypercube Concurrent Computers and Appli-
cations, Vol. I, Pasadena, CA., Jan., 1988, pp. 1555-1561.

Turner, David. “An overview of Miranda”, SIGPLAN No-
tices, Dec., 1986, pp. 158-166.

Turner, David. “Miranda System Manual”, 1987.

Wainwright, Roger. “A Software Kernel for a Pipeline
Model for Solving Matrix Problems on a Hypercube Mul-
tiprocessor Applied to Reservoir Simulation”, Proceed-
ings of the Fourth Conference on Hypercubes, Concur-
rent Computers, and Applications, Monterey, CA., Mar.
6-8, 1989. Amoco Production Company Research Center
Technical Report No. F89-C-2, Tulsa, OK., 1989.

Wainwright, Roger. “The Conjugate Gradient Method for
Solution of Large Sparse Systems of Linear Equations on
Hypercubes Applied to Reservoir Modeling”, Proceedings
of the ACM South Central Regional Conference, Nov.
16-18, 1989, Tulsa, OK. Amoco Production Company Re-
search Center Technical Report No. F89-C-5, Tulsa, OK.,
1989.

Wise, D.S. “Parallel Decomposition of Matrix Inversion
Using Quadtrees”, Proceedings 1986 International Con-
ference on Parallel Processing (IEEE Cat. No.
86CH2355-6), pp. 92-99.

Wise, D.S. and Franco, John. “Costs of Quadtree Repre-
sentation of Non-dense Matrices”, Computer Science
Dept., Indiana University, Bloomington, Indiana Techni-
cal Report No. 229, Oct., 1987.

213100
0 0
1121310
0l1 21300
0
olof1]2]3]o0
0] 1
0
0of|o 5
0 | o
Fig. 1b

Quad Representation for Fig. 1a



TABLE I

Test Results for Various Size Reservoir Models

RxR NxN CPU Number Number of Number of Number
Reservoir Matrix Time of Reductions Claims of GC
Size Size (Sec.) iter (millions) (millions)
2 4 3 96 2 2 0
4 16 27 205 2 2 0
8 64 185 308 10 13 2
16 256 1,154 430 59 76 15
(19 min.)
32 1024 6,464 544 310 412 89
(1.8 hrs)
64 4096 37,994 592 1405 1914 654
(10.5 hrs)
TABLE II
Estimated Execution Times for Larger Reservoir Models
K RxR NxN CPU Wall Clock
Reservoir Matrix Time* Time*
Size Size
7 128 16,384 2.6 days 15.6 days
8 256 65,636 15.6 days 93.6 days
9 512 262,144 93.6 days 1.5 years
* estimate




