Proceedings of the 1989 Seventeenth Annual ACM Computer Science Conference,
Louisville, KY, Feb. 21-23, 1989, pp. 232-238.

Parallel Sieve Algorithms on a Hypercube Multiprocessor

Roger L. Wainwright

Computer Science Department
The University of Tulsa

Abstract

Two sieve algorithms, a pipeline and a parallel version are
presented for a distributed-memory multiprocessor.
Traditionally, the sieve algorithm is solved using a pipeline
approach. This algorithm has a high communication to
computation ratio and as a result performs poorly. The
parallel algorithm 1is a substantial improvement over the
traditional pipeline algorithm. It has a low communication to
computation ratio. The speedup for this algorithm is nearly
linear. Further, unlike the pipeline algorithm, the parallel
algorithm performs just as well or even better on a shared
memory multiprocessor system.

Keywords: Sieve Algorithm, Parallel and Pipeline Algorithms,
Shared and Nonshared Memory Multiprocessors

1. Introduction

Eratosthenes of Cyrene, head of the Alexandria library around 200 B.C.,
developed a procedure for finding all of the prime numbers in a given range.
This algorithm, known today as the Sieve of Eratosthenes, is still the best
procedure for finding prime numbers. The fundamental operations of the
algorithm are fairly simple, however an efficient implementation requires some
additional thought. The algorithm uses a large array in memory and accesses
memory frequently. Depending on the range of values to search, the sieve
algorithm can use all of the available memory and if that is not enough can
repeatedly reuse all of the memory. A simple example of this is given in [4]
where a sieve algorithm is presented to determine the primes in any range using
as little as 64 KBytes of memory. Because of the nature of this algorithm, we
have seen 1in recent years its popularity as a benchmark on many computer
systems from the smallest microcomputers to the fastest supercomputers [1,20.

I have developed two parallel versions of the sieve algorithm using the
NCUBE/10 hypercube with 64 nodes at the Amoco Research Center. The first
algorithm 1is a simple straight forward pipeline parallelization of the
sequential algorithm using a ring topology. The second algorithm is a true
parallel algorithm where each node works only on its assigned range of values
independently of the other nodes. Both algorithms test the fundamental
performance parameters of the- hypercube. The algorithms are sensitive to load
balancing, memory limitations and message passing constraints, including the
number, length, and distance of the messages. In Section 2, the sequential
sieve algorithm is reviewed. In section 3, I review a parallel sieve algorithm
implemented for a shared memory multiprocessor system. In sections 4 and 5
respectively the pipeline and parallel sieve algorithms are presented. Section
6 gives summary and conclusions.

2. Review of the Sieve Algorithm

The Sieve algorithm for finding all of the prime numbers between 2 and N is
described in the follows steps:

(1) The integers 2 through N are written down in a list.

(2) Locate the leftmost integer, S, in this list that has not been crossed
out.

(3) From the beginning of the list, step through the list in multiples of S
crossing out all wvalues.

(4) Repeat steps 2 and 3 until S >= Sqrt(N).

(5) All values of S and any remaining numbers left in the 1list form the set
of prime numbers in the range 2 through N.

For example, consider finding all primes in the range 2..25 using the above
algorithm: (numbers are crossed out by making it blank)

Step 1: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Step 2: S 1is 2.

Step 3: 3 5 7 9 11 13 15 17 19 21 23 25

Step 2: S is 3.

Step 3: 5 7 11 13 17 19 23 25
Step 2: S is 5.

Step 3: 7 11 13 17 19 23

At this point the algorithm is finished and the prime numbers in the range 2
through 25 are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Notice that some numbers
may be crossed out several times. In the above example 10 was crossed out when
S was both 2 and 5. It is more efficient for the algorithm to blindly crossout
numbers even if they have been crossed out before. S 1s called the sieve value
to run through the 1list of numbers. The algorithm terminates when S »>=
Sqrt(N). This is because of the simple fact that any number less than or equal
to N cannot have all of its factors larger than Sqrt(N). Therefore, it is
unnecessary to sieve with wvalues beyond Sqrt(N).

3. A Parallel Sieve Algorithm for
a Shared Memory Multiprocessor

Bokhari [1] presents the following parallel sieve algorithm for a shared
memory multiprocessor system. In his algorithm an array of dimension N is used
to hold the integers 2..N and there are p processors available. The first step

of this algorithm initializes the array 1in parallel. Each processor
initializes a subrange of the array (approximately N/p integers each). This
corresponds to Step 1 in the above algorithm. Next each processor in turn

locates the next S value in the array and performs a sweep over the array of
integers crossing out multiples of S. This corresponds to Steps 2 and 3 in the
above algorithm. His algorithm is a simple parallelization of the original
sieve algorithm adapted to a shared memory multiprocessor.

There are several important observations concerning this algorithm that

Bokhari points out. First, it is important after a processor has determined
the next sieve value, S, that it be allowed to begin the sweeping process
before the next available processor determines its S value. Some
sychronization is required at this point. For example, if the first three
processors are not synchronized, then it is possible for the following
situation to occur. The first processor sieves 2, the second processor sieves

3, and the third processor erroneously picks up 4 to sieve, since the first
processor has not yet been able to cross it out. The algorithm still works,
but is inefficient since the third processor is wasting its time. Secondly,
Bokhari noticed that the processor sieving 2 has the longest execution time,
while the other processors all finish early. To improve utilization of the
processors a load balancing algorithm is required is assist processors that are
assigned low sieve values. All of this produces a complicated balancing act in
order to obtain efficient results. He ran this algerithm using 0.5, 1, and 2
million numbers using up to 17 processors and it appears from his results that
he was never able to obtain a speed up of more than six! His algorithm failed
to utilize the full potential of the multiprocessor system.

In the remainder of this paper I present two different parallel sieve
algorithms. The first algorithm is a simple parallelization of the original

sieve algorithm adapted to a distributed-memory multiprocessor system. This
algorithm behaves much the same way as Bokhar’s algorithm with the same
limitations. I was unable to obtaln large speedups and the algorithm was

limited in its performance capability due to routing large numbers of small
messages throughout the ring of nodes. The second algorithm, however, is much
simpler in concept. It is a true parallel algorithm, where each processor
works independently of other processors. Message passing is minimized in this
algorithm and near linear speedups are realized.

4. A Pipeline Sieve Algorithm

The cube manager obtains the value of N and the size of hypercube to use
from the user. The cube manager sends N to each node then collects all of the
prime numbers sent back from the various nodes. When each node finishes its
work, 1t notifies the cube manager. When all nodes have finished, the process
stops and the complete set of primes in the range 2..N are now available in the
cube manager. The fundemental operations of the cube manager are shown below:

Pipeline Sieve Algorithm (Cube Manager)

SEND N to each node
Repeat

RECEIVE prime numbers from the nodes
Until all nodes have completed

The nodes in the allocated hypercube are treated topologically as a ring.
That 1is previous and next nodes are defined as nodes of distance one away. I
considered only the cases where a complete ring is defined. Thus complete
cubes from size zero to six (1, 2, 4, 8, 16, 32, and 64 nodes) were used. To
begin the process, node 1 keeps sieve 2 and generates a list of odd numbers

3..N to send to the next node in the ring. The fundamental operations of each
node is given below:

Pipeline Sieve Algorithm (Each Node 1..p)

RECEIVE N from the cube manager
IF node one THEN generate the list 3..N and SEND the list to the next node
Repeat _
RECEIVE a list of numbers from the previous node
Strip off the first number in the list as the sieve, S
IF S > Sqrt(N) THEN SEND the list of numbers to cube manager and STOP
Use S to sieve the rest of the numbers in the list
SEND surviving numbers of the list to the next node
Until end of List

SEND all S values to the cube manager with a termination notice.

Each node strips off the first value in the list as a sieve and uses it to
sieve on the rest of the 1list. Surviving members of the list are forwarded to
the next node. Eventually, a node will pick up a sieve value that is larger
than Sqrt(N). When this happens, the node will send the remainder of the list
back to the cube manager. There is no need to sieve and forward the list since
all list members at this point are prime. The algorithm is basically finished
except for minor house cleaning. This node sends a termination message to the
next node. Each node thereafter in the ring will (1) receive the termination
message, (2) send all its sieve values back to the cube manager, notifying the
cube manager it is about to quit, and (3) forward the termination message to

the next node in the ring. When the termination message makes a full circle
the algorithm is done.

There are several subtle issues to point out. If each node were to collect
the entire 1list before performing the sieve process, then this would
essentially be a sequential process. Therefore the list must be sent in
several packets in order to overlap processing. The size of each packet (or
message) is an important issue in obtaining efficient performance. As a result
of splitting the list into many separate messages, it is important to be able
to tell if the incoming list is the continuation or the beginning of the list.
In addition the list will probably be passed around the ring several times
before coming to a halt. The first value in each message is examined. If it
is smaller than the previous values then it is the beginning of the list. This
is because a list is in increasing order.

An example of this algorithm is given in Figure 1. In this case four nodes
are used and N 1is 45. This algorithm can be thought of as a ring of
stationary processors where the list is passed around. Bokhari’s algorithm, on
the other hand, can be thought of as a stationary 1list (an array) where
processors run through the list. In this example the sieve values are 2, 3, 5,
and 7. The list stops at the fourth node. A synchronization problem occurs if
the list makes a full cycle back to the first node. Most likely the first node
is not finished with the generation of the list, and now the list has come
around for processing. Care must be taken not to stack up too many messages or

a deadlock may occur in the system. This is one of the fundamental performance
problems with this algorithm.

Figure 2 shows the execution time versus the number of nodes. The size of
the messages going around the ring greatly affects performance. In Figure 2, I
show the effect of using four different message lengths (20, 50, 200, and 800)
while finding all primes in the range 2..10,000. Message length in this case

is measured by the number of integers sent. Multiple by four to obtain the
message length in bytes. Sending only 20 values at a time from node to node
proved to be very inefficient. For example message length 20 using two nodes

took 8.5 seconds, while using message length 200 took 0.95 seconds. However, as
the size of the cube increases this had less of an affect. In this case, there
was little difference in using message sizes from 200 to 800, although the best
message size appears to be around 200. I tested the case of sending message
lengths of 2000, but this proved to be worse than messages in the 200 to 800
range. Generally, one should avoid sending very small or very large messages.
It 1is difficult to tell a priori what message length should be used. The
optimal value will vary with N.

Figure 2 also illustrates that this pipeline sieve algorithm has very poor
performance. The best performance for N = 10,000 was 0.191 seconds occurring
at 32 nodes using a message length of 200. The sequential sieve algorithm on
one node takes 0.502 seconds. I define speedup as the ratio of the time using
the Dbest sequential algorithm on one node by the time from the parallel
algorithm on multiple nodes. This algorithm achieved an extremely poor speedup
of only 2.6 while using 32 nodes. The parallel algorithm on one node takes
1.63 seconds. This 1is over three times slower than the sequential version.
This is due to all of the messages a single node will send to itself.

Even though the pipeline sieve algorithm is not the best approach to solve
this problem, it does point out the importance of message passing constraints
in a ring topology when the computation to communication ratio is small. Even
when care is taken to optimize performance by adjusting the message lengths in
this algorithm, it is still very easy to deadlock our system as explained in
the following sectiocn.

NCUBE Communication System

The communication system in each of the NCUBE nodes is called VERTEX. It
provides communication and process control functions. In our present system
VERTEX uses only a few thousands bytes of memory. Approximately 30 KBytes of
memory are reserved in each node for input/output message buffers. The rest of
the 512 KBytes may be used for data and the executing program. Most hypercubes
support the store and forward routing mechanism. This includes the NCUBE/10.
A pair of adjacent processors communicate through links directly connecting the
processors. This {g a node to node (one hop) communication system.

Communication between neighboring nodes proceeds as follows. The sending node
will transfer the message to its buffer area. If the buffer 1s full then the

sending node "blocks" and will wait until buffer space is available. Next a
request 1s sent to the receiving (adjacent) node indicating how 1long the
message 1is. This defines the amount of buffer space needed for the message.

If sufficient buffer space is available an acknowledgment message is returned
to the sending node and the message is transferred and placed in the buffer
area of the receiving node. If there is insufficient buffer space in the
receiving node then the acknowledgment message is held up until space is
available. If this happens, the sending node is "blocked". Data sent between
two nonadjacent processors is copied from processor to processor in a series of
one hop messages. Notice that each node stores the entire message before
sending it on to the next node in the path. This uses CPU and memory resources
of the processor, however it is the simplest mechanism to implement. One major
side effect is that a "blocked" node will NOT allow any message traffic to go
through it since its buffer space is full or it is waiting on an
acknowledgment. This can easily cause a deadlock if the programmer is not
careful. Also in this mechanism a message must always be sent in the reverse
direction of the data (acknowledgment), thus increasing message traffic load.
Both the SEND and RECEIVE commands are blocking commands. A SEND blocks until
the message has Dbeen copied so when it returns the message butfer can be
reused. The RECEIVE command is a blocking function and does not return until
the message is received or an error is returned [3].

I have found message passing in the NCUBE system to be a delicate matter.
It is very easy to deadlock the system. It is not the least bit difficult to
arrive at a situation where two blocked nodes are waiting on each other. I
have found in some instances that VERTEX does not seem to use a safe buffer
management system. In order to ensure that a deadlock not occur, It has been
suggested to never allow more than 30K bytes of messages in the entire cube at
any one time. This avoids the unlikely (but possible) event that all of the
messages have migrated to the same node and overwritten the buffers. My
experience has been that even with much less than 30k bytes of messages in the
cube, deadlock often occurs [5,6].

5. A Parallel Sieve Algorithm

In the parallel sieve algorithm the cube manager obtains the value of N and
the size of the hypercube to use from the user and communicates this to node
one. The cube manager is not used in this algorithm. Instead a dedicated node
(node one) performs the task of determining the set of primes in the range of
2..8qrt(N). This set of primes is called the Sieve Set. Once the Sieve Set
has been determined, it is broadcasted to all of the remaining nodes, 2..p. At
this point, each node including node one is responsible for using the Sieve Set
to sieve N/p values each. Each node works independent of other nodes and the
workload is balanced. The fundamental operations of node one are given below.

Parallel Sieve Algorithm (Node One)

(1) RECEIVE N,p from the Cube Manager

{(2) Determine the Sieve Set

(3) Broadcast the Sieve Set to Nodes 2..p

(4) Using Sieve Set, sieve the range Sqrt(N) .. N/p

(5) SEND resulting primes from this range to Cube Manager

The fundamental operations of each of the other nodes, 2..p, 1is described
below.

Parallel Sieve Algorithm (Node i, (2 <= i <= p))

(1) RECEIVE the Sieve Set from Node One
(2) Using the Sieve Set, sieve range (N(i-1))/p +1 .. Ni/p
(3) SEND resulting primes from this range to Cube Manager

An example of this algorithm is given in Figure 3. In this case, p is 4
and N is 4096. Node one determines the Sieve Set. This can be done recursively
by first determining the primes in the range 2..Sqrt(Sqrt(N)) and so forth. 1In
this case node one determines the primes in the range 2..8 and uses this to
sieve values through 64. The Sieve Set is then broadcasted to nodes 2..4. At
this point each of the nodes 1..4 are responsible for determining primes in
the respective ranges 65..1024, 1025..2048, 2049..3072, and 3073..4096.

The data communication in this algorithm is much less than that of the
pipeline version. Each node receives the Sieve Set, and returns the primes in
its assigned range. There is no required internode communication as in the
pipeline sieve algorithm. This means that any number of nodes may be used +to
solve the problem; the number of nodes used does not need to be a power of two.
In order to overlap computation of the Sieve Set by node one and the
computation of the other nodes, the Sieve Set is sent in separate packets. For
example, after the first three values of the Sieve set (2, 3 and 5) are
determined, +they are sent to the other nodes. The amount of computation
required by the nodes to sieve their respective ranges using these three values
is generally more the the amount of time required by node one in determining
the rest of the Sieve Set. Thus when the sieving nodes require additional
sieve values, they are usually ready and waiting. Therefore, in this algorithm
all of the nodes can begin to process in parallel almost immediately.

Figure 4 shows speedup of the parallel sieve algorithm versus the number of
nodes for N = 10,000, 60,000, 400,000 and one million. The speedup is almost
perfectly linear in each case up to a certain point. After a certain point the
computation to communication ratio decreases to a point where it begins to
degrade performance. In some cases performance was actually worse when
additional nodes were added. Generally, this algorithm works best for large
values of N where the computation to communication ratio is kept high. Note
the case where N is one million. Speedup was nearly linear up to around 30
nodes. The speedup was about 44 when 64 nodes were used.

6. Summary and Conclusions

I have described two parallel implementations of the sieve algorithm on the
NCUBE/10, a distributed-memory multiprocessor system. The first algorithm is
the traditional pipeline sieve algorithm. This algorithm uses a ring topology.
The nature of the algorithm is such that the ratio of communication to
computation ratio is extremely high. The size of the messages going around the
ring plays an important part in the overall efficiency of this algorithm. The
pipeline sieve algorithm only works for small values of N due to communication
limitations. It was very easy to cause a deadlock in the system with this
algorithm due to the high amount of message traffic. Ultimately, message
traffic was artifically slowed down to bring the computation to communication

ratio more in line. This greatly affected efficiency. The performance of the
algorithm is extremely poor. The best performance, for example, for N = 10,000
was a speedup of only 2.6 using 32 nodes. Not only is the amount of message
traffic a major performance factor, but the work load is unbalanced among the
nodes. Nodes lower in number have more work to do than nodes higher in number,
due to the pipeline nature of the algorithm. The poor performance of this
algorithm 1is no different from that obtained by Bokhari [1] in his pipeline
algorithm on a shared memory multiprocessor system. His pipeline algorithm
exhibited the same load balancing problems and relatively poor speedups. The
pipeline approach is clearly inefficient regardless of memory configuration.

The second algorithm described in this paper is a parallel sieve algorithm.
This algorithm takes a different approach compared to the first algorithm and
is much more efficient than Bokhar’s algorithm. The work 1load among the
processors 1s divided evenly. The processors do not communicate among each
other; they work completely independent of each other. Communication is only
with the cube manager. Because of this the parallel sieve algorithm will work
just as well on a shared memory system, perhaps better. There are no memory
contention problems. The parallel algorithm is a substantial improvement over
the traditional pipeline algorithm. It has a low communication to computation
ratio and works best when this ratio is keep low, that is for large values of

N. For size one million, the speedup was nearly linear up to a 30 nodes before
beginning to level off.

Clearly, the parallel version of this algorithm is substantially superior
in every measurement over the traditional pipeline sieve algorithm, regardless
of shared or distributed-memory. I feel that both the parallel and pipeline
sieve algorithms will continue to be useful test procedures for multiprocessor
systems. The pipeline sieve algorithm tests a systems ability to handle
algorithms with high communication to computation ratios with heavy message
traffic. The parallel sieve algorithm tests a systems ability to handle a
truly parallel algorithm with the hope of obtaining nearly linear speedup.

Acknowledgments

The work reported in this paper was supported by Amoco Research Center
Tulsa, Oklahoma.

References
[1] S.H. Bokhari, Multiprocessing the Sieve of Eratosthenes, Computer, Vol.
20, No. 4, April 1987, 50-58.

(2] J.R. Edwards and G. Hartwig, Benchmarking the clones, Byte, Vol. 10, No.
11, Nov. 1985, 195-201.

[3] NCUBE Corporation, NCUBE System Manual, 1987.

[4] T.A. Peng, One Million Primes Through the Sieve, Byte, Vol. 10, No. 11,
Nov. 1985, 243-244.

(5]

Le]

R.L. Wainwright, Deriving Parallel Computations from Functional
Specifications: A Seismic Example on a Hypercube, International Journal of
Parallel Programming, Vol. 16, No. 3.

R.L. Wainwright, Message Passing Considerations for Hypercube
Multiprocessors, Proceedings of the Second Workshop on Applied Computing,
University of Tulsa, Tulsa, Oklahoma, March, 1988.

Node 2 43,...11,7,5 Node 3
L

Sieve 3 Sieve 5

3 5

4 NS
ﬂ,ﬂ@. A ./V\\

Cube Manager

Fig. 1 Pipeline Sieve Algorithm P=4, N=45

Figure 2: Execution Time Versus Number of Nodes

Execution Time in Seconds

T
—
1
St | Message Length
I\ 0 20 2200
b\ 050 L g
T
oo\
\
AN
.5 - ,.y/ // -
e !/NH:..WW:HU e —M.,lMM
| | J | | |
0 10 20 30 40 50 60

Number of Nodes

/70

p=d ‘960y=N wunobly 8Adls [allEted € ‘DI

sawllid

960¥ '€.0€
abuey

p ©PON

sauwllid

20169
abuey

| 8PON

—.@-.—mnmhm
1S 8ns8IS

sawilid

2.0€'6v0¢
abuey

¢ 8PON

sawlld

gy02 G20t
abuey

¢ 9PON

0L

R B b B SRR Bae

0S 0)4
!

M09 o
A0l o

SonpA JO abupy|

- 0¢

e

-0

0G

dnpaadg

LULNLIOD)Y 9A3IS [9fpdnd Jo dnpaads i+ aunbi

