SIGICE Bulletin Vol. 19, No. 3, February, 1994

A FAMILY OF GENETIC ALGORITHM PACKAGES
ON A WORKSTATION FOR SOLVING
COMBINATORIAL OPTIMIZATION PROBLEMS®

Roger L. Wainwright
The University of Tulsa

Keywords: Genetic Algorithms, Combinatorial
Optimization

Abstract

LibGA, HYPERGEN and GATutor represent a trio of in-
house developed genetic algorithm software packages for
conducting research in combinatorial optimization prob-
lems. For a variety of reasons, these packages were de-
veloped using the C programming language on a Unix
platform, specifically a Sun workstation. We used these
packages successfully in developing sequential and parallel
genetic algorithms for solving numerous combinatorial
optimization problems. Several of these combinatorial
optimization research projects and their results are de-
scribed.

Introduction

In theory, the algorithms in the class of NP-complete
problems are considered computationaly equivalent. NP-
complete problems have no known deterministic polyno-
mial time algorithms; that is, there is no known solution
except to try all combinations. These problems are some-
times referred to as combinatorial optimization problems.
It is currently impossible to optimally solve any of these
problems. except for trivial cases. In general, finding a
solution requires an organized search through the problem
space. An unguided search is extremely inefficient.
Consequently, researchers have focused on approximation
techniques which provide efficient. near optimal solutions.
Some of the techniques which are applicable to NP-com-
plete problems include heuristic techniques. tabu searching,
simulated annealing, neural networks, and genetic algo-
rithms (GA). In this paper I will concentrate on the genetic
algorithm technique implemented on a workstation for
solving combinatorial optimization problems.

" Research was supported by OCAST Grant AR2-004 and
Sun Microsystems Inc.

Genetic Algorithms

There are several ways that genetic algorithms differ from
traditional algorithms. Genetic algorithms are based on the
principles of natural genetics and survival of the fittest.
Genetic algorithms search through a solution space by
emulating biological selection and reproduction. The GA
works from a population of strings instead of a single point.
The genetic algorithm works with a coding of the parame-
ter rather than the actual parameter. The genetic algorithm
uses probabilistic transition rules. not deterministic rules.
and the applications of the genetic operators causes infor-
mation from the previous generation to be carried over to
the next. In addition. genetic algorithms produce "close” to
optimal results in a "reasonable” amount of time. Further-
more, genetic algorithms are fairly simple to develop and
they are suitable for parallel processing.

The genetic algorithm is a robust search and optimization
technique using probabilistic rules to evolve a population
from one generation to the next. The transition rules going
from one generation to the next are called genetic recombi-
nation operators. These include Reproduction (of the more
"fit" chromosomes). Crossover, where portions of two
chromosomes are exchanged in some manner, and Muta-
tion. Crossover combines the "fittest” chromosomes and
passes superior genes to the next generation thus providing
new points in the solution space. Mutation is performed
infrequently. A new individual (point in the solution
space) is created by altering some of the bits of an individ-
ual. Mutation ensures the entire state space will eventually
be searched (given enough time), and can lead the popula-
tion out of a local minima. Genetic algorithms retain
information from one generation to the next. This informa-
tion is used to prune the search space and generate plausi-
ble solutions within the specified constraints [2,14].

The genetic algorithm creates an initial population of feasi-
ble solutions, and then recombines them in a such way 1o
guide the search to only the most promising areas of the



state space. In a generational GA the offspring are saved
in a separate pool until the pool size is reached. Then the
children’s pool replaces the parent’s pool for the next
generation. In a sready-state GA the offspring and parents
occupy the same pool. Each time an offspring is generated
it is placed into the pool. and the weakest chromosome is
"dropped off" the pool. These two cases represent two
extremes in pool management for genetic algorithms.
Several researchers have investigated the benefits of solv-
ing combinatorial optimization problems using genetic
algorithms [3.7.8.9,13,16.22.23]. It is assumed the reader
is familiar with the fundamentals of genetic algorithms.

Genetic algorithm packages for a single processor have
been available for several years. A steady-state GA such as
GENITOR [21] and a generational GA such as GENESIS
[11] are two example packages that have been available for
several years. The research reported here made use of
LibGA [6], a GA package developed in house. LibGA
offers the best of GENESIS and GENITOR including the
ability to use a steady-state or a generational approach or a
combination of both. Davis, Goldberg and Rawling pro-
vide an excellent in depth study of genetic algorithms
[7.8.10.16].

Even though the fundamental concepts of genetic algo-
rithms are fairly simple and straightforward, there are
numerous implementation variations and options to incor-
porate into a genetic algorithm. For example. there are
numerous selection techniques for determining chromo-
somes for crossover. There are many ways to parametrize
a model and encode it into a finite length chromosome.
There are several techniques for introducing mutation to a
chromosome. There are also dozens of possible crossover
operators that have been developed in recent years depend-
ing on the problem type and chromosome encoding
scheme.

Genetic Algorithm Packages

GENESIS [11], written by John Grefenstette, was the first
widely available genetic algorithm package. Since that
time, a variety of genetic algorithm packages have been
developed. Most of these use the generational model.
However, a few use the steady-state model introduced with
GENITOR [21] in 1988. For a current list of GA packages.
the reader is referred to the GA Software Survey [17]. The
survey contains more detailed information concerning what
is available and how to obtain GA packages. Notice most

of these packages were developed for the workstation

environment and not for PC’s. Genetic algorithms require
a tremendous amount of CPU time for moderate to large
sized problems, up to several days, perhaps. Several of the
most popular GA packages are summarized below.

GAucsd [17] is a GENESIS-based genetic algorithm. It
offers several bug fixes and an improved user interface. In
addition, it can distribute the GA over a network of ma-
chines. Its most impressive feature is Dynamic Parameter
Encoding (DPE). DPE is a technique which is used in
continuous search spaces. It redefines the encoding used
for the chromosome, adapting the *granularity’ to the
convergence rate. GAucsd was designed primarily for use
on bit string chromosomes. which does not work well with
order-based problems. While GAucsd can encode the
integers using grey-code bit strings, it does not ensure that
order is preserved. As a result. this can produce chromo-
somes with invalid allele orderings or alleles with meaning-
less bit patterns. GAucsd uses a variation of the roulette
wheel for selection. a bit inverting mutation, and a two-
point crossover operator [6].

GENEsYs [17] is another popular generational genetic
algorithm. It is based on GENESIS and includes several
different selection schemes such as linear ranking, Boltz-
mann. (mu, lambda)-selection. The package includes
uniform and n-point crossover as well as discrete and
intermediate recombination. Mutation can be self-adap-
tive. Unfortunately, the user does not have the ability to
test a steady-state model with these options.

GENITOR [21] is a steady-state GA which uses a rank-
based, biased selection and weakest chromosome replace-
ment. It has the ability to work with integer and floating
point types as well as bit strings. GENITOR includes an
example GA for the traveling salesman problem with order,
PMX and edge-based crossover operators. It can also
perform subpopulation modeling. We have used GENI-
TOR successfully in the past for order-based problems [5].
However. steady-state genetic algorithms can converge
prematurely. They require large pool sizes and many trials
to ensure the best solution is found [6].

LibGA

The LibGA software package [6] was developed primarily
because of the noticeable deficiencies of existing GA
packages. Qur previous research was limited to the steady-
state GA used in GENITOR augmented with custom order-
based crossover and mutation functions. The problems thal
steady-state GAs have with premature convergence led tc
the more commonly used generational genetic algorithm.
We decided that modifying GENITOR to include a genera-
tional model was too great a task. Consequently, we elect-
ed to develop our own workstation based genetic algorithm
package to meet the needs of our current research.

LibGA is a collection of routines written in the C pro-
gramming language. It can run on a variety of PC’s anc
workstations. However, since everything in LibGA is ir
double precision and since genetic algorithms are inherent:



ly CPU bound, we elected to implement LibGA in a work-
station environment using Unix. We found that executing
LibGA on a PC was extremely slow. LibGA provides a
user-friendly workbench for order-based genetic algorithm
research. It includes a rich set of genetic operators for
selection, crossover and mutation. An important feature of
LibGA is the ability to implement both a generational and
steady-state genetic algorithms using the genetic operators.
This allows researchers the ability to compare between the
two approaches. Other features of LibGA include a genera-
tion gap, elitism, and the ability to implement a dynamic
generation gap. Other routines are provided for initializa-
tion, reading a configuration file and generating various
statical reports. Thus far, LibGA has been requested and
sent to over a dozen locations in the United States and
Europe.

LibGA includes operators for selection. replacement,
crossover, and mutation. Selection and replacement can be
augmented with elitism. This ensures that the best member
of a population survives into the next generation. The
selection operators included in LibGA are: uniform-ran-
dom, roulette, min-roulette, and rank-biased. Uniform-
random selection picks a member of the pool at random,
completely ignoring fitness or other factors. Thus each
chromosome in the pool is equally likely to be selected.

The replacement operators in LibGA are: append. by-rank,
first-weaker, and weakest. The append replacement opera-
tor appends new chromosomes to an existing pool. This
operator is used in the classical generational GA to place
offspring in the new pool. The by-rank operator is the
same as the one used in GENITOR. The pool is ranked by
sorting the fitness values. If the chromosome has a "high”
fitness. it will be placed in the pool. displacing "weaker"
chromosomes. If its fitness is worse than the weakest
member of the pool, it dies and is not placed in the pool.
Note the weakest and first-weaker operators are somewhere
between the append and by-rank operators.

LibGA’s crossover operators include simple, orderl,
order2, position, cycle, PMX, and asexual. Simple cross-
over is used for traditional bit string encodings of the
chromosome. In this case a random crossover point is
selected which divides each parent chromosome into two
parts. Alternate parts are contributed by each parent to
generate two offspring. This is also known as single point
crossover. This crossover operator does not work for
order-based problems, however, since order is not pre-
served. The other crossover operators preserve order
information. Orderl, order2, position, cycle, and PMX
operators are described in Starkweather er al. [20]. The
asexual operator is a simple swap of two randomly selected
genes, which also is suitable for order-based problems.
LibGA currently offers the following mutation operators:
simple-invert, simple-random, and swap.

HYPERGEN

HYPERGEN [12] was developed as a research tool for
investigating parallel genetic algorithms applied to combi-
natorial optimization problems. HYPERGEN is a distrib-
uted genetic algorithm for a hypercube. The key concept to
HYPERGEN is that it distributes the initial population
evenly among the processors. Each processor (island)
executes a sequential GA on its subpopulation performing
crossover and mutation. HYPERGEN uses a steady-state
reproduction scheme where only a few members of the
population are removed at each iteration. The population
pool size remains constant in each processor. After a pre-
scribed number of reproductions, (called the migration
interval)-the "fittest" chromosomes in each processor are
exchanged among other processors introducing new genetic
material into each island. The amount of genetic material
to exchange is called the migration rate. This process
continues undl the entire population stabilizes [12].

HYPERGEN was designed as a modular collection of
routines for generating the initial population, evaluation
function. selection, reproduction, mutation, migration
interval, migration rate and summary statistics. A Key
feature in HYPERGEN is that the sequential GA on each
processor and the periodic migration of genetic material
between processors is performed automatically for the user.
One of the design requirements for HYPERGEN is that the
user can use the package without concerning himself with
the hypercube topology, message passing, or other details
of parallel processing.

To drive the HYPERGEN system, the user must provide
the evaluation function, which defines the problem to be
solved. The user also specifies the following parameters
(most of which have defaults, if not specified): (a) input
dataset describing the problem, (b) output dataset (option-
al), (c) seed the initial population (optional), (d) dimen-
sion of the hypercube, (¢) random number seed, (f) popu-
lation size (per node), (g) bias parameter for selection, (h)
the migration interval, (i) the migration rate, (j) how often
to collect and report statistics, (k) maximum migrations al-
lowed. (1) select crossover function, and (m) select muta-
tion function [12].

HYPERGEN allows the user to input a dataset describing
the problem. For example, a sequence of coordinates
describing locations of cities for the Traveling Salesman
Problem. Results can be sent to a file or default to the
screen. The user also has the option to seed the initial
population or allow for a random initial population to be
generated. The migration interval, default of 20, specifies
how many local reproductions are to occur in each node
between migrations. The migration rate, default 20%, is
the percent of the population in each node that is ex-
changed with another node. The bias parameter is used (C



indicate how much more likely is the best chromosome to
be selected over the median chromosome. We developed a
feature that allows for an adaptive migration interval and
for an adaptive migration rate. This means the migration
rate and interval are monitored and altered depending on
the conditions of the population. For example different
interval and rates may work better as the population ma-
tures. Genetic material is exchanged during each succes-
sive migration along the dimensions of the hypercube.

HYPERGEN was implemented for order-based genetic
algorithms. An order-based GA is where all chromosomes
are a permutation of a list. Order-based GAs can be ap-
plied to a wide range of combinatorial optimization prob-
lems such as the following classic problems: Bin Packing,
TSP, Package Placement, Job Scheduling, Vehicle Rout-
ing, Network Routing, and various layout problems, etc.
The HYPERGEN system supplied crossover functions for
order-based GAs include Edge Recombination, Order
Crossover #1, Order Crossover #2, PMX, Cycle Crossover,
Position Crossover. The Mutation functions available in
HYPERGEN include swapping two elements, moving one
element to another location. and reordering a sublist.
HYPERGEN was used successfully to find new "best”
tours on three "standard” TSP problems. and out performed
our parallel simulated annealing algorithm on various
Package Placement Problems [12].

Intel Corporation has developed an iPSC/2 hypercube and
iPSC/860 hypercube simulator that runs on a Unix based
workstation. We have implemented HYPERGEN on the
Intel simulator. Thus. most of our initial software devel-
opment using HYPERGEN to solve various problems has
been developed on a Sun workstation. The CPU demands
and an operating system that allows for pipes and sockets
to simulate a hypercube makes it necessary 10 use a power-
ful workstation. The simulator has been extremely valu-
able. Only after considerable testing do we port the code to
a hypercube multiprocessor.

GATutor

GATutor [15] is a graphical tutorial system for genetic
algorithms. The X Window/Motif system provides power-
ful tools for the development of the user interface with a
familiar feel and look. We implemented the Set Covering
Problem (SCP) and the Traveling Salesman Problem (TSP)
as two example GA problems in the tutorial. The TSP
problem uses an order-based chromosome representation
(permutation of n objects), while the SCP uses bit strings.
On the screen layout of the tutorial, the user has numerous
buttons to select the GA parameters. These include (a)
population size, (b) type of initial population (random or
from a file), (c) selection bias, (d) maximum number of
generations (trials), () generation gap, (f) selection mode
(roulette, etc.), (g) replacement method, (h) mode (steady-

state or generational), (i) mutation method. (j) mutation
rate. (k) selection of the crossover operation from a choice
of several possibilities. (1). elitism, etc. The user has the
ability to do a step by step execution or to do a continuous
run. We developed the screen layout to provide a visual
representation of the chromosomes in the population with
the ability to scroll. This gives the user the option of
varying one or more GA parameters to visually see the
effect on the algorithm. An important feature of this tutori-
al is the set of help screens that explain (with examples) all
of the options for each of the GA parameters.

GATutor was designed to assist students in learning the
foundations and principles of genetic algorithms and as a
research tool in developing genetic algorithms. Specifical-
ly, GATutor was: (1) Designed to be used by anyone after
a typical introduction lecture on genetic algorithms. The
lecture may not necessarily include any instruction on
GATutor at all. (2) Designed for a general audience, not
just computer science students. Thus. no programming is
required and very few computer skills are required by the
user. (3) Portable and easy to install. (4) Modular enough
to easily be able to add new features and options to the
package by different people over several years. (5)
Comprehensive. with a full set of help menus to explain
(with examples) all of the numerous GA terms, definitions,
operators and parameters, and (6) A self contained package
where students can visually see the effect of executing a
genetic algorithm.

Based on the design criteria, we elected to implement
GATutor using the X Window/Motif svstem with the C
programming language on a Unix based platform. The
speed required for a rapid feedback tutorial. and the
enormous CPU time required to run a moderate to large
GA led us to develop the package on a Sun Sparc 10
Workstation instead of a PC.

Combinatorial Optimization Problems

Added to LibGA and HYPERGEN, GATutor completes
our trio of in-house developed GA software for doing
research in combinatorial optimization problems. We have
used these packages successfully in developing GAs for
solving numerous combinatorial optimization problems.
Several of these research problems are described below.

1) "A Genetic Algorithm for Packing in Three Dimen-
sions" [5]. Recent research in Bin Packing has almost
exclusively been in two dimensions. In this research, we
extend the classic Bin Packing problem to three dimen-
sions. We investigated the solutions for the three dimen-
sional packing problem using first fit and next fit packing
strategies with and without genetic algorithms. Five data
sets were used to test our algorithms, both random and
contrived. They range from 50 to 500 packages. We also



studied several existing crossover functions for the genetic
algorithm: PMX. Cycle. and Order2. A new crossover
function. Randl, was developed. The genetic algorithm
was tested using a randomly generated initial population
pool. and a seeded initial pool. The seeded pool was
generated from a package ordering produced by rotating
and sorting the packages by decreasing height. Results
showed the seeded genetic algorithm using Next Fit and
PMX produced the best overall results for the data sets
tested. The seeded genetic algorithm using Next Fit and
Order2 provided the best results considering both rapid
execution time and packing efficiently. We found genetic
algorithms to be an excellent technique for yielding good
solutions for the three dimensional bin packing problem.

2) "Multiple Vehicle Routing with Time Windows
using Genetic Algorithms" [2]. In this research we inves-
tigated genetic algorithms as a heuristic technique for
obtaining optimal or near optimal solutions to the single
and multiple vehicle routing problem with time windows
and capacity constraints (VRPTW). The traditional cross-
over operators for order-based genetic algorithms are not
well suited for optimization problems with multiple con-
straints. We developed and presented two new crossover
operators, Merge Cross #1 (MX1) and Merge Cross #2
(MX2). These new operators actually produce a family of
new crossover operators. The Merge Cross operators are
based upon the notion of a global precedence among genes
independent of any chromosome. We compared the Merge
Cross family of operators with several well known cross-
over operators: PMX, Cycle and Edge Recombination. We
tested our MX Crossover operators on three randomly
generated models of 15. 30. and 75 customers. A fourth
model of 99 customers was supplied to us by a local retail
distribution company in Tulsa, Hale-Halsell Company. In
each instance one of our new MX operators was the best
performer. We showed that all of the MX operators are
excellent crossover operators for solving problems where
there exists a global precedence relationship among the
genes. In the 99 customer problem., the local retail distribu-
tion company used 39 vehicles. while our algorithms yield-
ed a 30 vehicle solution.

3) "Manipulating Subpopulations of Feasible and Infea-
sible Solutions in Genetic Algorithms™ [18]. This re-
search explores the partitioning of the population pool in
genetic algorithms into separate subpopulations of feasible
and infeasible solutions. and the interaction on a regular
basis of crossover operations among and within the sub-
populations. The Set Covering Problem was chosen as a
representative optimization problem to apply our subpopu-
lation strategies. We designed nine algorithms for manipu-
lating the two population pools and compared this against
the traditional GA. The traditional GA uses a single popu-
lation pool where infeasible solutions are generally consid-
ered infrequently or ignored. All of our algorithms signifi-

cantly and consistently outperformed the traditional GA in
all of the test problems illustrating the importance of infea-
sible solutions as a source of good genetic material. Fur-
thermore. results show that the random select consistently
outperformed the bias select from the infeasible pool sug-
gesting all infeasible solutions should be considered equal.
4) "Manipulating Subpopulations in Genetic Algo-
rithms for Solving the k-way Graph Partitioning Prob-
lem" [19]. This research also explores the partitioning of
the population pool in genetic algorithms (GA) into sepa-
rate subpopulations of feasible and infeasible solutions, and
the interaction of crossover operations among and within
the subpopulations. The Graph Bisection Problem (GBP)
and the k-way Graph Partitioning Problems (k-GPP) were
chosen as representative optimization problems to apply
our subpopulation strategies. We designed several algo-
rithms for manipulating the two population pools and
compared this against the traditional GA. The traditional
GA uses a single population pool where infeasible solu-
tions are generally considered infrequently or ignored. We
also developed several new crossover operators to be used
while manipulating feasible and infeasible solutions.

We define an X-crossover as one that involves two chro-
mosomes from the feasible pool. A Y-crossover involves
one chromosome from the feasible pool and one from the
infeasible pool. A Z-crossover involves two chromosomes
from the infeasible pool. In all cases the resulting feasible
solutions are placed into the feasible pool and the resulting
infeasible solutions are placed into the infeasible pool. We
designed a class of algorithms for manipulating the feasible
and infeasible population pools based on the X,Y, and Z
crossover options. We also developed a class of oscillation
algorithms that varies x and y percentages with each new
trial. We compared the difference in executing a problem
using a bias selection from the infeasible pool, and a
random selection. We also developed several new cross-
over operators specifically for this problem using the infea-
sible and feasible pools: Modified Uniform, Modified
Asexual, and Asexual Uniform crossover Operators.

We generated several datasets to test our GA implementa-
tion of the k-GPP problem. The performance of the tradi-
tional GA was hindered by not taking advantage of an
infeasible pool. All of our algorithms significantly and
consistently outperformed the traditional GA in all of the
test problems. This illustrates again the importance of
infeasible solutions as a source of good genetic material.
Furthermore, results show that two of our new crossover
operators consistently out performed the others.

5) "Detecting Multiple Outliers in Multidimensional
Data Using Genetic Algorithms™ [4]. Detection and
treatment of outliers tremendously improves the results of
normal statistical analysis. However, the detection of large
numbers of outliers in a large dataset is a combinatorial



optimization problem. We used a genetic algorithm to
detect outliers in three sample datasets with great success.
The GA was a vast improvement over conventional outlier
detection algorithms. In this research we described in great
detail how GAs are applied to a given dataset, how the
chromosome is constructed, and which crossover functions
proved better than others. To our knowledge this work
represents to first time GAs have been applied to outlier
detection.

6) "The Design of a Multipoint Line Topology for a
Communication Network Using Genetic Algorithms"
[1]. In this research we investigated genetic algorithms as
a heuristic technique for obtaining a near optimal solution
for the multipoint line topology (MLT) problem. The MLT
problem involves determining minimum cost links for a
collection of terminal sites that communicate with a central
site in a communication network. The problem is to
determine a minimum cost tree, rooted at the central site
and spanning all terminal sites. Each subtree rooted at the
central site corresponds to a multipoint line interconnecting
the central site with a subset of the terminal sites. The
constraint is that the aggregate capacity requirement of the
terminals in each multipoint line cannot exceed the capaci-
ty of the corresponding multipoint line. This problem is
more generally known as the Constrained Minimum Span-
ning Tree (CMST) problem. The problem is NP-complete.
The Esau-Williams algorithm is widely used to obtain a
near optimal minimum cost spanning tree that satisfies the
constraint.

Comparison between the Esau-Williams algorithm and
different GA representations and crossover strategies were
made in this research. The terminal locations were ran-
domly generated and Euclidian distance was used as the
cost. A randomly generated capacity was associated with
each terminal. The best performing GA representation was
an adaptation of the order-based Davis encoding method.
Qur genetic algorithms outperformed the Esau-Williams
algorithm in all cases tested.

7) "Near-Optimal Triangulation of a Point Set using
Genetic Algorithm" [24]. This research explores the
triangulation of a point set using genetic algorithms. We
implemented several GAs including a parallel genetic
algorithm (HYPERGEN) for solving the triangulation
problem. We developed a crossover operator specifically
for the triangulation problem. Various data structures
needed to implement the crossover operator were de-
veloped. Since our crossover operator is also the mutation
operator, we investigated the effect of our genetic algo-
rithms with and without mutation. We compared our
genetic algorithms against the best known heuristic algo-
rithm and a simulated annealing implementation for the
triangulation problem. We tested all of the algorithms
using randomly generated datasets of various sizes and

some contrived datasets.

Our results indicate the GA using mutation performs better,
in general, than our GA without using mutation. This
signifies that mutation (even though it is the same as the
crossover operator) is significant, especially as the state
space size increases. Considering overall performance, the
ranking of the algorithms we tested are: parallel GA (best),
greedy (second), and generational GA with mutation
(third). The simulated annealing algorithm was the worst
algorithm. We attribute the superior performance of the
parallel GA over the sequential GAs to the separately
maintained population pools allowing for the independent
breeding of chromosomes in separate islands. The parallel
GA allows for an excellent mix of the chromosomes insur-
ing a more rigorous search through the state space.

The workstation based packages, LibGA, HYPERGEN and
GATutor have proved invaluable to us in our development
and study of genetic algorithms for solving numerous
combinatorial optimization problems.

LibGA, HYPERGEN and GATutor are available at no cost
by writing or sending email to the author. The author’s
address is Department of Mathematical and Computer
Sciences. The University of Tulsa, 600 South College
Avenue, Tulsa, Oklahoma 74104-3189,
rogerw(@penguin.mes.utulsa.edu

Acknowledgements

This research has been supported by OCAST Grant AR2-
004. The authors also wish to acknowledge the support of
Sun Microsystems Inc.

References

[1] Abuali. F.N., Schoenefeld, D.A. and Wainwright,
R.L. "The Design of a Multipoint Line Topology for a
Communication Network Using Genetic Algorithms”,
Seventh Oklahoma Conference on Artificial Intelli-
gence, November, 1993.

[2] Blanton, J.L. and Wainwright, R.L. "Multiple Vehicle
Routing with Time and Capacity Constraints using
Genetic Algorithms", Proceedings of the Fifth Inter-
national Conference on Genetic Algorithms (ICGA-
93), Stephanie Forrest, Editor, Morgan Kaufmann
Publisher, 1993, pp. 452-459.

[3] Brown, D.E., Huntley, C.L. and Spillane, AR. "A
Parallel Genetic Heuristic for the Quadratic Assign-
ment Problem", Proceedings of the Third Internation-
al Conference on Genetic Algorithms, Morgar
Kaufmann, 1989.



(4]

(51

[6]

(7]

(8l

[9]

[10]

[11]

(12]

(13]

[14]

(15]

Crawford, K.D., Wainwright. R.L, and Vasicek, D.J.,
"Detecting Multiple Outliers in Multidimensional
Data Using Genetic Algorithms”, in review.

Corcoran, A.L. and Wainwright, R.L. "A Genetic
Algorithm for Packing in Three Dimensions”, Pro-
ceedings of the 1992 ACM Symposium on Applied
Computing, March 1-3, 1992, pp. 1021-1030, ACM
Press.

Corcoran, A.L. and Wainwright, R.L., "LibGA: A
User-Friendly Workbench for Order-Based Genetic
Algorithm Research”, Proceedings of the 1993
ACM/ISIGAPP Symposium on Applied Computing,
February, 14-16, 1993, pp. 111-117, ACM Press.

Davis, L. ed., Genetic Algorithms and Simulated
Annealing, Morgan Kaufmann Publisher, 1987.

Davis, L. ed., Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

De Jong, K.A. and Spears, W.M., "Using Genetic
Algorithms to Solve NP-Complete Problems”, Pro-
ceedings of the Third International Conference on
Genetic Algorithms, June, 1989, pp. 124-132.

Goldberg, D.E., Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley,
1989.

Grefenstette, J., GENESIS, Navy Center for Applied
Research in Artificial Intelligence, Navy research
Lab., Wash. D.C. 20375-5000.

Knight, L.R. and Wainwright, R.L. "THYPERGEN - A
Distributed Genetic Algorithm on a Hypercube”,
Proceedings of the 1992 IEEE Scalable High Per-
formance Computing Conference, Williamsburg, VA.,
April 26-29, 1992, pp. 232-235, IEEE Press.

Liepins, G.E. and Vose, M.D. "Deceptiveness and
Genetic Algorithm Dynamics, Foundations of Genet-
ic Algorithms, G. Rawling, ed., Morgan Kaufmann
Publishers, 1991.

Mutalik, P.M., Knight, L.R., Blanton, J.L. and
Wainwright, R.L. "Solving Combinatorial Optimiza-
tion Problems Using Parallel Simulated Annealing
and Parallel Genetic Algorithms”, Proceedings of the
1992 ACM/SIGAPP Symposium on Applied Comput-
ing, March 1-3, 1992. pp. 1031-1038, ACM Press.

Prince, C., Wainwright, R.L., Schoenefeld, D.A. and
Tull, T., "GATutor: A Graphical Tutorial System for
Genetic Algorithms”, in review.

(16]

(17]

[18]

(19]

[20]

(21]

[22]

(23]

[24]

Rawling, G. ed., Foundations of Genetic Algorithms,
Morgan Kaufmann Publishers, 1991.

Schraudolph, Nicol N., Genetic algorithm software
survey. Available by anonymous ftp from
cs.ucsd.edu as /pub/GAucsd/GAsorf.txt, August,
1992.

Sekharan, D. Ansa and Wainwright, R.L., "Manipu-
lating Subpopulations of Feasible and Infeasible
Solutions in Genetic Algorithms", Proceedings of the
1993 ACM/SIGAPP Symposium on Applied Comput-
ing, February, 14-16, 1993, pp. 118-125, ACM Press.

Sekharan, D. Ansa and Wainwright, R.L., "Manipu-
lating Subpopulations in Genetic Algorithms for
Solving the k-way Graph Partitioning Problem™
Seventh Oklahoma Conference on Artificial Intelli-
gence, November, 1993.

Starkweather, T.. McDaniel, S.. Mathias, K. Whitley
D. and Whitley, C. "A Comparison of Genetic
Sequencing Operators”, Proceedings of the Fourth
International Conference on Genetic Algorithms.
June, 1991, pp. 69-76.

Whitney, D. and Kauth, J., GENITOR: A Differen
Genetic Algorithm, Proceedings of the Rocky Moun-
tain Conference on Artificial Intelligence, Denver
Co., 1988, pp. 118-130.

Whitney, D., Starkweather, T. and Fuquat, D.
"Scheduling Problems and Traveling Salesman: The
Genetic Edge Recombination Operator”. Proceeding.
of the Third International Conference on Genetic
Algorithms, June, 1989.

Whitley, D. and Starkweather. T. "GENITOR II: A
Distributed Genetic Algorithm, Journal of Experi
mental and Theoretical Artificial Intelligence
2(1990) 189-214.

Wu, Yu and Wainwright, R.L., "Near-Optimal Trian
gulation of a Point Set using Genetic Algorithm”
Seventh Oklahoma Conference on Artificial Intelli
gence, November, 1993,



