Parallelization of the Dynamic Programming
Algorithm for the Matrix Chain
Product on a Hypercube

Steve A. Strate
Roger L. Wainwright

Department of Mathematical and Computer Science
The University of Tulsa

Abstract

In this paper we look at the dynamic programming
technique implemented on a distributed-memory,
multiprocessor system. We investigate the matrix
chain product algorithm as an example problem. A
method for parallelizing the dynamic programming
technique for solving the matrix chain product prob-
lem is presented. Load balancing considerations are
presented. The sequential dynamic programming
technique is a fine grain algorithm, and considered by
many researchers to be too fine grain to execute effec-
tively on a hypercube. Our parallel algorithm yeilded
modest speedups for fixed sized problems. Scaled
problems promise even better speedups. Results show
that respectable performance for the dynamic pro-
gramming algorithmic technique can be achieved on a
hypercube.

Keywords: Dynamic Programming, Distributed
Memory Multiprocessor System,

Parallel Programming, Matrix Chain Product
Dynamic Programming

Dynamic programming is a decomposition technique

for solving certain optimization problems, and is a
powerful tool for solving combinatorial problems. To

TH0307-9/90/0000/0078$01.00 © 1990 IEEE

Proceedings of the 1990 ACM/Ieee Symposium on Applied Comput ing
8-6,

April,

solve a large problem using the divide-and-conquer
technique, one breaks the problem into smaller sub-
problems, each of which can be solved independently.
These subproblems are in turn recursively divided into
smaller subproblems and solved independently, and so
on. There are many optimization problems for which
the divide-and-conquer technique will not work. In
many instances it is not clear which subproblems
should be solved. That is, the best decomposition of a
problem, in order to achieve the optimal solution, may
not always be known. Using the dynamic program-
ming technique, however, one simply solves all possi-
ble subproblems and stores the results to be used later
in solving larger subproblems. The dynamic pro-
gramming technique can be thought of as the divide-
and-conquer principle taken to an extreme. Many
classical problems have been solved using the dynam-
ic programming technique. Such problems include all
shortest paths in a weighted graph, matrix chain
product, optimal binary search tree, traveling salesman
problem, context free language recognition, 0/1
knapsack problem, Washall’s algorithm for transitive
closure, minimum triangulation of a polygon, com-
parison of sequences, flow shop scheduling, maze
routing, and many other applications.

Matrix Chain Product

The Matrix Chain Product problem is described as
follows: given a series of matrices of different sizes,
the problem is to determine the order in which the

1990, 78-84.

pPpP.

matrices should be multiplied in order to minimize the
total amount of computation. The following example
is taken from Sedgewick [5]. Given the following
matrices and their sizes, determine in what order they
should be multiplied to minimize the computational
cost.

MATRIX A B C D E F
SIZE 4x2 2x3 3x1 1x2 2x2 2x3

The cost of multiplying two matrices of size p x q and
q x r is defined to be p*q*r. If the example matrices
above are multiplied from left to right, that is
((((AB)C)D)E)F, the total cost is 84. If the matrices
are multiplied from right to left, that is
A(B(C(D(EF)))), the total cost is 64. The dynamic
programming algorithm gives the optimal solution by
establishing the following table of solved subprob-
lems:

AB AB CD CD CD

B 6 10 14 22
BC CD CD CD

C 6 10 19
CD CD CD

D [10
DE EF

E 12
EF

The sequential algorithm begins by solving all sub-
problems of length two. That is, the cost of multiply-
ing matrices AB, BC, CD, DE, and EF are determined.
The cost is 24, 6, 6, 4, and 12, respectively. These
values are entered in the above table along the main
diagonal. The next diagonal, entries AC, BD, CE, and
DF are calculated based on the previous results. For
example the AC entry, which represents the best way
to multiply ABC, is either A(BC) or (AB)C. Results
for (BC) and (AB) have already been calculated and

are located in the previous diagonal. It is easy to
determine that the best ordering is A(BC) with a cost
of 14. The AB under 14 simply means that the opti-
mal order for multiplication will have a split between
A and B, that is, ..A)(B.. The process continues by
calculating the remaining diagonals until finally the
AF entry in the table is determined. This is the opti-
mal solution. The optimal solution in this case is to
split the matrices between CD, that is, (ABC)(DEF)
with a cost of 36. The best way to multiply (ABC)
and (DEF) has already been determined. Hence the
final order is (A(BC))((DE)F). Of course substantial
savings can be achieved when large matrices are
involved.

The essence of dynamic programming algorithms is
that they trade space for time by storing solutions to
subproblems rather than recomputing them. The
Matrix Chain Algorithm takes O(N3) time using
O(N2) space, where N is the number of matrices.
Notice the matrices are not actually multiplied togeth-
er, only the cost of the multiplications is determined.
Dynamic programming is based on the principle of
optimality. Simply stated, this means the completion
of an optimal sequence of decisions must be optimal.
Generally, the computation proceeds from the small
subproblems to the larger subproblems, as in the
above example, storing the intermediate results in a
table. This technique is called the tabular technique
and often results in the most efficient implementation
of the dynamic programming algorithm. Furthermore,
for dynamic programming to apply, the subproblems
must be complete self-contained problems with no
hidden dependencies. In the above example this is
illustrated by the fact that the five entries on the main
diagonal may be determined independently of each
other, and thus could be calculated in parallel. After
that, the four entries on the next diagonal may be
performed in parallel, and so on.

Hypercube Implementation

A Hypercube Multiprocessor of dimension d consists
of 29 identical nodes (or processors). The dimensions
range from 0 <= d <= 10 in most systems. Each
processor is a general-purpose computer with its own
local memory, and resident copy of the operating
system. The facilities used in this research is an

iPSC/1 d5 (32 node) hypercube. Each node has 512k
bytes of local memory. The nodes are numbered from
0 to 24-1 using an d-bit binary number. If two nodes
have the same binary representation except for one bit,
then they are called adjacent nodes (neighbors). There
are direct communication links between all pairs of
adjacent nodes. The nodes can be thought of as being
arranged in a cube of dimension d. In this case each
node is directly connected to d adjacent nodes. A
communication path between any two nodes in an d-
dimensional cube is at most d. It is assumed the
reader is familiar with the fundamental concepts of a
hypercube multiprocessor system.

The sequential algorithm solves all subproblems on
the main diagonal of the table, followed by each of the
upper diagonals until a solution is determined in the
upper right corner of the table. Further, for the matrix
chain product problem the i,j entry in the table is
calculated as a function of the table entries in row i
left of position i,j and the column j entries below
position i,j in the table. Functionally this can be
expressed as Table[i,j] = f(Table[i,i+1..j-1],
Table[i+1..j-1,j1).

The parallel dynamic programming algorithm for the
matrix chain product problem views the hypercube as
aring (nearest neighbor) topology. For simplicity the
processors are numbered consecutively 1,2, ..., n in
the ring. The actual node numbers in a ring are
numbered in gray code order. The table of entries
containing results of all subproblems are partitioned
among the processors by rows. Processor 1 will calcu-
late the first set of rows in the table, processor 2 will
calculate the next set of rows, and so forth where
processor n calculates the last set of rows. In this
arrangement processor 1 will eventually determine the
solution. Clearly, if the rows of the table are evenly
partitoned among the processors, processor 1 will
have the most entries to calculate, processor 2 the next
most, and so forth, where processor n will have the
least. Thus the partition of the rows of the table
among the processors is skewed to allow for a bal-
anced work load among the processors. This is dis-
cussed in more detail later.

Each processor simultaneously calculates the entries
in the portion of the table it is assigned. The entries in

the table are processed by columns left to right,
bottom to top. This is unlike the traditional sequential
algorithm. Each time processor i, (i=2..n), completes
an entire column, the column of entries is sent to
processor i-1. Furthermore, each time processor i,
(i=1..n-1), begins to work on a new column, it re-
ceives entries for the same column previously calcu-
lated from processor i+1. In this manner, the addi-
tional storage required by any one processor (in addi-
tion to its portion of the table entries) is at most the
size of one entire column of the table (N cells). Once
a column of entries is determined in a given processor,
memory used to hold the same column entries from its
neighboring processor is released and reused for the
next column. Figure 1 illustrated these principles. In
this example N=26 matrices, and n=4 processors. The
numbers in the table entries represent the order in
which they are calculated. Each processor has the
same order. The x entries indicate calculated table
entries, (each processor is shown to have processed
the same number of entries). Notice in this skewed
arrangement, when any processor requires table en-
tries from its neighbor in order to continue calcula-
tions in the same column, the information is sent and
is waiting in the input message queue.

The goal is to keep processor 1 busy, while at the
same time minimizing the idle time of the other proc-
essors. Simply distributing the total number of table
entries evenly among the processors is insufficient,
Several factors must be taken into consideration.
Notice calculating each table entry by processor i
requires more CPU time than calculating a table entry
by processor i+1, for i=1..n-1. This is because all
previously calculated column entries from higher
numbered processors must be considered. This also
means the size of the messages (previously calculated
column entries in the table) passed from processori to
processor i-1, for i=2..n in the ring, increases as i
decreases. In considering all these factors the rows of
the Table are partitioned among the processors in a
skewed fashion to allow for an even work load among
the processors. In our system we allow the researcher
to input his own partitioning arrangement. In this
way, for a given problem, the proper load balance can
be determined empirically. Working in this manner
with various size problems allowed us to determine an
a priori row partitioning formula to be applied de-

pending on the number of matrices, and the number of
Processors.

Results

Table I gives CPU timings in seconds, and speedups
for various problem sizes and number of processors
used. The maximum problem size we could run was
190 matrices, which is a modest size problem. At this
time we have run only fixed sized problems. That is,
the problem size is held fixed, while the number of
processors is allowed to increase. Note the fine grain
nature of this problem; the 50 matrix chain product
problem was solved on one processor in under 11
seconds. The best speedup generated was 12 using 32
nodes and 190 matrices. Clearly, there is a trend of
better performance and the problem size increases.
The ratio of computation to communication clearly
increases as the problem size increases, which is
desirable. Scaled problems are problems where the
problem size increases as the number of processors
increase, maximizing the computation to communica-
tion ratio. In general scaled problems yield better
performance than fixed size problems. The results
reported here are consistant in speedup and efficiency
with other research on an hypercube for other prob-
lems solved using the dynamic programming tech-
nique [2,4]. Our results show that the dynamic pro-
gramming technique can work very sucessfully on a
hypercube.

Conclusions and Further Research

The sequential dynamic programming technique is a
fine grain algorithm; that is, the ratio of computation
to communication in a hypercube system is very
small. Hence, the dynamic programming technique is
considered by many researchers to be too fine grain to
execute effectively on a hypercube. Our results show
that the hypercube can provide good speedups in
solving the matrix chain product problem.

Research in the area of dynamic programming on a
hypercube is relatively scarce. However, some recent
articles implementing specific algorithms via the
dynamic programming technique on a hypercube have
appeared in the literature. Jeng and Sahni [2] imple-
mented a parallel dynamic programming algorithm for

the all pairs shortest paths algorithm on a hypercube.
Lee and others [4] implemented the (/1 knapsack
problem using dynamic programming on a hypercube.
Both implementations differed from the implementa-
tion presented here, primarily due to the nature of the
problems to be solved. Their performance results in
terms of speedups and effeciency, however, are simi-
lar. Other references that discuss parallelization of
dynamic programming implemented on an SIMD
machine, and mesh connected systolic array include
[1,3]. Yao [6] discusses the parallelization of dynamic
programming for a theoritical perspective.

One of the features of the dynamic programming
technique is the succinct manner in which each table
entry is determined. Generally, most dynamic pro-
gramming solutions that use the tabular technique
calculate each table entry as a simple function of
previously determined values in the table. Hence, the
dynamic programming algorithm when implemented
using the tabular technique can easily be written in
functional form. A close look at the sequential code
for the 0/1 knapsack problem, optimal binary search
tree problem, and the matrix chain product problem
reveals they differ very little [5]. Each algorithm
basically has a triple nested loop and the only signifi-
cant difference between each of the algorithms is in
the inner most loop, where the functional relationship
between various entries in the table are specified.

The second phase of our research in this area involves
developing a dynamic programming shell for a hyper-
cube. This shell will be similar to the work reported
here, and will allow for scaled problems. The ring
topology and message passing code will already be in
place in skeleton form. All the user need do is provide
the functional specification for calculating each table
entry, which depends on what problem is to be solved.
From this specification the shell will automatically
partition the work load among the processors and
perform the calculations according the functional
specification. In this way a single shell can be used in
an automatic manner to solve many different problems
using the tabular dynamic programming technique.
The goal is to releave the researcher from writing code
from scratch for each new algorithm, thus provide an
environment for the ecase of solving many different
optimization problems.

Researchers have recently become interested in solv-
ing large optimization problems using large numbers
of processors. The dynamic programming technique
offers optimal solutions to many important optimiza-
tion problems. On a sequential machine for problem
size n, timings from O(n3) time to exponential time
are commonly required. Since this is too expensive,
less time consuming algorithms have been developed
such as greedy algorithms. These less expensive
algorithms rapidly find a "good" solution, but not an
optimal solution. With present day parallel hardware
there is no need to settle for less than an optimal solu-
tion.

References

1. E. Edminston and R.A. Wagner, "Parallelization of
the Dynamic Programming Algorithm for Comparison
of Sequences”, Proceedings of the 1987 International
Conference on Parallel Processing, August, 1987, pp.
78-80.

2.J.F. Jeng and S. Sahni, "All Pairs Shortest Paths on
a Hypercube Multiprocessor”, Proceedings of the
1987 International Conference on Parallel Processing,
August, 1987, pp. 713-716.

3. G. Lakhani and R. Dorairay, "A VLSI Implementa-
tion of all-pair shortest path problem”, Proceedings of
the 1987 International Conference on Parallel Process-
ing, August, 1987, pp. 207-209.

4.]. Lee, E. Shragowitz and S. Sahni, "A Hypercube
Algorithm for the 0/1 Knapsack Problem”, Proceed-
ings of the 1987 International Conference on Parallel
Processing, August, 1987, pp. 699-706.

5. R. Sedgewick, "Algorithms", Addision-Wesley,
1988.

6. F. Yao, "Speed-up in Dynamic Programming",
SIAM Journal on Algebraic and Descartes Mathemat-
ics, vol. 3, no. 4, December, 1982, pp. 532-540.

w N

~ on o

w N = O WO o

AWV P WRNEOWOo WU

345 7890123456789012345¢6
369 X X X
258 X X X X
. 47 X X X X X
. 1 6 x x X X
. 59 xxxx
4 8 x x X X
» I XX XX
. 136 xxx
. 259 x x
. 48 x xx
. 7 XXX
. X X X
X X
136xxx
. 259 xx
. 48 xx
.l T XX
X X X
. X X
B
Fig. 1 Example Table Partition for N = 26, n = 4

Processor
1

Processor
2

Processor
3

Processor
4

Table I

Test Results ~— Matrix Chain Product

CPU Time (Seconds) Speedup
Number
of Number of Matrices Number of Matrices
Nodes 50 120 190 50 120 190
1 10.55 141.78 557.35 1.00 1.00 1.00
2 5.85 72.50 285.32 1.80 1.96 1.95
4 3.81 51.81 195.55 2.77 2.74 2.85
8 2.57 29.42 118.34 4.11 4,82 4,71
16 2.33 16.36 61.94 4.53 8.67 9.00
32 1.82 12.17 44,42 5.80 11.65 12.55

