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ABSTRACT

This paper explores the triangulation of a point set
using genetic algorithms (GA). We implemented
several GAs including a parallel genetic algorithm for
solving the triangulation problem. We developed a
crossover operator specifically for the triangulation
problem. The various data structures needed to
implement the crossover are presented. Since our
crossover operator is also the mutation operator, we
investigated the effect of our genetic algorithms with
and without mutation. We compared our genetic
algorithms against the best known heuristic algorithm
and a simulated annealing implementation for the
triangulation problem. We tested all of the algorithms
using randomly generated datasets of various sizes
and contrived datasets. Our results showed the paral-
lel GA obtained the best overall performance, while
‘the simulated annealing algorithm was the worst
algorithm,

1. INTRODUCTION

Given a set § of n distinct points in the Euclidian
plane, join them by nonintersecting straight line
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segments so that every region internal to the convex
hull is a triangle. This results in a triangulation of the
set S. A triangulation of n points is not unique.
However, being a planar graph, a triangulation of n
points has at most 32-6 edges. Define T(S) as a trian-
gulation of §. Also define the weight (cost) of a
triangulation, W(T(S)), as the sum of the Euclidian
length of all of the edges in T(S). The optimal trian-
gulation problem finds a triangulation 7(S) such that
W(T(S)) is minimum among all possible triangulations
of S. The optimal triangulation problem has applica-
tions in finite element analysis. It also has applica-
tions in numerical interpolation of bivariate data when
the function values are available at n irregular-spaced
data points (x,,y)) in a plane and an approximation to
the function at a new point (x,y) is desired [19].

The two best known algorithms for the triangulation
problem are the greedy algorithm, and the Delaunay
triangulation algorithm. The Delaunay triangulation
algorithm for a set S is the straight-line dual of the
Voronoi diagram of the set S. The greedy algorithm
executes in O(n’logn) time, and the Delaunay triangu-
lation algorithm executes in O(nlogn) time. Pseudo
code for the greedy algorithm is described by Lloyd
[14]. It has been conjectured that both the greedy
algorithm and the Delaunay triangulation algorithm
always produced the optimal (minimum weight)
triangulation. This was disproved by Lloyd [14] in



1977. The triangulation problem is classified as an
NP-hard problem, where the existence of a polynomi-
al-time algorithm remains open. However, given a set
of points that form a convex hull, the optimal triangu-
lation can be determined in polynomial time. For
example, the triangulation algorithm for points on a
convex hull can be easily implemented using dynamic
programming in O(x®) time using O(n?) space [22].
Corman [5] gives an excellent description of this
problem for the interested reader.

Given the significance of the triangulation in a variety
of numerical, scientific and engineering applications,
developing optimal or near-optimal triangulation
algorithms is extremely important. In this paper, we
present a genetic algorithm (GA) implementation for
the triangulation problem. We compare our results
with the greedy algorithm and the simulated anneal-
ing (SA) technique for the triangulation problem.
Randomly generated datasets and contrived datasets
are used to make comparisons. The rest of the paper
is presented as follows. In Section 2, the fundamen-
tals of simulated annealing are reviewed. In Section
3, the fundamentals of genetic algorithms are present-
ed along with our GA implementation for the triangu-
lation problem. We developed a sequential GA and
also a parallel GA implementation for the triangula-
tion problem. Results and conclusions are presented
in Section 4.

2. SIMULATED ANNEALING TRIANGULATION

Simulated annealing is a stochastic computational
technique for finding near optimal solutions to large
optimization problems. The method of simulated
~ annealing is an analogy with thermodynamics, specif-
ically in the manner that metals cool (anneal), or in
the way liquids freeze and crystallize. If liquid metal
cools too rapidly, atoms do not have time to line
themselves up to form a pure crystal. Instead a rather
high energy state is reached. However, if the metal is
cooled slowly atoms have time to line themselves up
to form a minimum energy system [17]. Metropolis
[16] in 1953 was the first to incorporate these con-
cepts into numerical calculations. Kirkpatrick [11] in
1983 was the first to use this concept to solve combi-
natorial optimization problems. It is assumed the

reader is familiar with the fundamentals of simulated
annealing.

The simulated annealing triangulation algorithm that
we used was developed by Sen and Zheng [21]. Their
algorithm is summarized below. In the triangulation
algorithm, simulated annealing starts with an arbitrary
initial triangulation. The objective function, which is
the sum of the Euclidian length of all of the edges in
the triangulation, is analogous to the current energy
state of the system. A convergence condition of
simulated annealing is that any state can be reached
from any other state. A simple perturbation function
is used to move from one state to another.

In a triangulation of a set, S, an edge that is not on the
convex hull is called an internal edge. Each internal
edge in a triangulation is shared by two triangular
faces and the combination of the two faces forms a
quadrilateral. The perturbation function randomly
selects one of the internal edges in the current triangu-
lation, identifies the associated quadrilateral and
replaces the internal edge by the alternate diagonal
edge. This is illustrated in Figure 1(a). The edge
connecting A and C can be replaced by the edge
connecting B and D. Care must be taken because it is
not possible to exchange the edges when the quadri-
lateral is not convex. See Figure 1(b). In this case
another internal edge is randomly selected until a
convex quadrilateral is found.

Changes from one state to another (ie., a new triangu-
lation from a previous triangulation) that result in a
reduced objective function are always accepted. This
is a analogous to slow cooling. However, changes
that increase the objective function are only accepted
with probability p(d,T) = exp(-d/T), where d is the
change in the objective function from one triangula-
tion to another, and T is the "temperature” of the
system. The temperature parameter controls the
annealing process. By occasionally allowing the
energy of the system to rise slightly before cooling
again is analogous to occasionally allowing for a
worse triangulation. This may allow the system to
avoid falling into a local minima where it cannot get
out.



The annealing schedule, controlled by the parameter
T, requires some experimentation. Sen and Zheng
used an initial temperature of 50 times the average
length of all of the intemnal edges of the initial triangu-
lation. The number of iterations at each temperature
was 0.9 times the number of internal edges. The
temperature decrement is defined asT , =09 *T_
,en Typically the system freezes at a certain tempera-
ture. In this case the annealing stops when the cost of
the triangulation resulting from three consecutive
temperature changes is within a small tolerance. The
interested reader is referred to Sen and Zheng [21] for
more details on this particular algorithm. Nahar ez al.
[18] give an excellent overview of simulated anneal-
ing.

3. GENETIC ALGORITHM TRIANGULATION

Genetic Algorithms are applicable to a wide variety of
problems. In particular, genetic algorithms have been
very successful in obtaining near-optimal solutions to
many different combinatorial optimization problems
[1-3,6-8,17,24]. Genetic algorithms use probabilistic
rules to evolve a population from one generation to
the next. The transition rules going from one genera-
tion to the next are called genetic recombination
operators. These include Reproduction (of the more
"fit" chromosomes), Crossover, where portions of two
chromosomes are exchanged in some manner, and
Mutation. Crossover combines the "fittest” chromo-
somes and passes superior genes to the next genera-
tion thus providing new points in the solution space.

In a generational GA the offspring are saved in a
separate pool until the pool size is reached. Then the
~ children’s pool replaces the parent’s pool for the next
generation. In a steady-state GA the offspring and
parents occupy the same pool. Each time an offspring
is generated it is placed into the pool, and the weakest
chromosome is "dropped off" the pool. These two
cases represent two extremes in pool management for
genetic algorithms. We tested a steady-state GA and
a generational GA for comparison on each of the
datasets. It is assumed the reader is familiar with the
fundamentals of genetic algorithms.

Genetic algorithm packages for a single processor
have been available for several years. A steady-state
GA such as GENITOR [23] and a generational GA
such as GENESIS [10] are the two example packages
that have been available for several years. The re-
search reported here made use of LibGA [4], a GA
package developed in house. LibGA offers the best
of GENESIS and GENITOR including the ability to
use a steady-state or a generational approach or a
combination of both. Davis, Goldberg and Rawling
provide an excellent in depth study of genetic algo-
rithms [6,7,9,20].

We considered several chromosome representations
for a triangulation of a set, S. Unfortunately, the
triangulation problem is not an order-based problem,
where a chromosome is a permutation of the set of
points. Hence the traditional crossover techniques for
order-based problems such as Cycle, PMX, Edge
Recombination, Orderl, Order2, etc. do not work well
for this problem. It is possible to enumerate all possi-
ble edges among a set of n points and represent a
triangulation as a fixed length bit string, where a "1"
bit indicates the presence of a particular edge, and a
"0" bit represents the absence of the edge. However,
for large problems this results in long relatively sparse
bit strings. Furthermore, traditional bit string cross-
over operators produce infeasible triangulations in
nearly every instance.

Consider the set of six points in Figure 2, with an
example triangulation. We elected to represent a
chromosome as a list of edges in the triangulation.
The chromosome representation for the triangulation
in Figure 2 is given below.

((1,2), (1,3), (1,6), (2,3), (2,4), (3,4), (3,6), (4,5),
(4.,6). (5,6)).

The edges are shown in sorted order. In practice, the
order is irrelevant, and the edges are not placed in
sorted order unless the chromosome is actually select-
ed for reproduction. In our representation a chromo-
some length is the number of edges, which is fixed for
a given set of points, as long as no three points are
colinear. We represent a chromosome in an edge
array data structure shown in Figure 3(a). Once a



chromosome is selected for reproduction, the edge
array is sorted in order to easily generate the associat-
ed triangle array, as shown in Figure 3(b). We used
the edge-exchange crossover operator, the same
technique used in the simulated annealing algorithm.
An edge is randomly selected from the chromosome,
for example edge (4,6) in Figure 3(a). Next the trian-
gle array is search for triangles with this common
edge, for example (3,4,6) and (4,5,6) in Figure 3(b).
This yields two triangles with a common edge. If the
resulting quadrilateral is not convex, then another
random edge is selected and the process is repeated.
If the quadrilateral is convex, then the selected edge is
replaced with the alternate edge. Our crossover
operator is asexual; that is one parent produces one
child. However, the LibGA package requires two
parents to generate two children. To remain compati-
ble with the other operations in LibGA, we used two
independent crossover operations on two parents each
time to produce two children. The authors are not
aware of any previous research using genetic algo-
rithms to solve the triangulation problem.

Another possible asexual crossover operator uses the
triangle array to detect a 5-point convex polygon.
Once located there are five possible triangulations for
the polygon, and the crossover operator selects the
best one. We did not implement this operator. This
concept could be extended to large size polygons,
however, the computation is very expensive. We
used a mutation rate of 0.05. The mutation operator
is the same as the crossover operator.

We used a population size between 35 and 50 for the
generational GA, and a population size of 75 for the
- steady-state GA. We found the smaller sized popula-
tions (35 to 50) generally did better than larger sizes
for the generational GA. In general, the steady-state
GA requires a larger population pool than the genera-
tional GA to avoid premature convergence.

Lee and Schacter [13] proved that given a set §, of n
points, any triangulation, 7(S), has the same number
of triangles, N, =2(n-1) - N W and the same number of
edges, Ne =3(n-1) - Nh, where Nh is the number of the
points on the convex hull of S. We used the above
observations to help generate the initial population.

For a given set of points, we determined the number
of points on the convex hull, and hence the number of
required edges for a valid triangulation. We random-
ly placed edges in the set of points such that no two
edges crossed until the proper number of edges were
placed. This did not always produce a valid triangula-
tion due to the random placement of the edges. If an
invalid triangulation resulted, it was discarded and
another attempt was made until the proper number of
valid triangulations were generated to fill the pool.
This turns out to be a fairly effective procedure for
generating an initial population of valid triangula-
tions. For example, for » = 40 using the generational
GA, 48 attempts were required to generate a pool size
of 36 valid triangulations. The steady-state GA only
required 98 attempts to generate 75 valid triangula-
tions. However, for n = 190 using the generational
GA, 114 attempts were required to generate a pool
size of 36 valid triangulations. The steady-state GA
required 254 attempts to generate 75 valid triangula-
tions.

Before running the test cases we anticipated the GA
approach would produce superior results than the SA
approach for several reasons. Simulated Annealing
uses one feasible solution and a perturbation function.
The GA has a population of feasible solutions to
choose from, while performing the same perturbation
function. While the SA approach accepts superior
perturbations and occasionally a worse one, the GA
uses a selection bias to manipulate superior chromo-
somes. Finally, the mutation operator in the GA
allows (in theory) for all parts of the state space to be
searched. We also anticipated the GA would require
longer execution times to complete compared to the
SA algorithm. Results shown in the next section
verified our initial assumptions.

4. RESULTS AND CONCLUSIONS

We compared the greedy algorithm, simulated anneal-
ing algorithm and various genetic algorithms for
solving the triangulation problem using two types of
datasets. A Type I dataset consists of a collection of n
randomly generated points in a plane. The (x,y)
coordinate of each point was generated randomly in
the range of 150 to 550. A Type II dataset consists of



a set of points that reside entirely on an arc of a circle,
such that the arc subtends less than 180 degrees. An
example is shown in Figure 4. This type of dataset
was suggested by Manacher and Zobrist [15], and is
known to be difficult for the greedy algorithm to yield
a good solution.

Since our crossover operator is the same as the muta-
tion operator, one might initially conclude that muta-
tion may be of little use in our GA implementations of
the triangulation problem. To study the effect of
mutation, we tested the generational GA and the
steady-state GA with and without mutation. We also
developed a parallel triangulation genetic algorithm
by modifying HYPERGEN for our specific problem.
HYPERGEN [12] is a parallel genetic algorithm
package implemented specifically for the hypercube
architecture. HYPERGEN was developed as a re-
search tool for investigating parallel genetic algo-
rithms applied to combinatorial optimization prob-
lems. HYPERGEN distributes the initial population
evenly among the processors. Each processor (island)
executes a sequential GA on its subpopulation per-
forming crossover and mutation. HYPERGEN is a
modular collection of routines for generating the ini-
tial population, evaluation function, selection (based
on a bias function), reproduction, mutation, migration
interval, migration rate and summary statistics. The
sequential GA on each processor is performed auto-
matically for the user. The periodic migration of
genetic material between processors is also performed
automatically for the user. One of the design re-
quirements for HYPERGEN is that the user can use
the package without concerning himself with the
hypercube topology, message passing, or other details
“of parallel processing. In all cases our parallel GA
was implemented using four processors.

Table I depicts the results of seven triangulation
algorithms for Type I datasets: greedy, generational
GA without mutation, generational GA with mutation,
steady-state GA without mutation, steady-state GA
with mutation, simulated annealing, and a parallel
GA. We tested Type I datasets for n = 10, 20, 30,
40, ..., 200. Results from Table I indicate the genera-
tional and steady-state genetic algorithms consistently
performed better on larger problems when imple-

mented with mutation. Specifically, Table I shows
the generational GA with mutation obtained better
results than the generational GA without mutation for
n>= 150. Similarly the steady-state GA with muta-
tion obtained better results than the steady-state GA
without mutation for n >= 90. This signifies that
mutation (even though it is the same as the crossover
operator) is significant, especially as the state space
size increases.

In 16 of the 20 test cases shown in Table I, the gener-
ational GA obtain the same or better results than the
steady-state GA (considering with and without muta-
tion). Furthermore, In every instance (except one
case) the generational GA obtain the same or better
results than the simulated annealing algorithm. In
exactly half of the 20 data sets tested, the generational
GA obtain the same or better results than the greedy
algorithm. In general, the genetic algorithm triangu-
lation outperformed the greedy algorithm on datasets
of size 130 or less. The greedy algorithm consistently
did better than the generational genetic algorithm for
datasets size 140 to 200. However, the best overall
algorithm was the parallel genetic algorithm, obtain-
ing the best result of any algorithm in approximately
80% of the cases. The parallel GA, in general, per-
formed very well for larger datasets (dataset size 110
and larger). Considering overall performance, the
ranking of the algorithms from our results in Table I
for Type I datasets are: parallel GA (best), greedy
(second), and generational GA with mutation (third).
The SA algorithm was the worst algorithm. Sen [21]
concluded in his research that the greedy algorithm
for Type I datasets performed about the same as his
simulated annealing algorithm. We did not obtain the
same results.

We attribute the superior performance of the parallel
GA over the sequential GAs to the separately main-
tained population pools allowing for the independent
breeding of chromosomes in separate islands. The
parallel GA allows for an excellent mix of the chro-
mosomes insuring a more rigorous search through the
state space. We did not spend much time fine tuning
the GA parameters. We believe with the proper fine
tuning of the GA parameters that the sequential and
parallel GAs could easily obtain even better results



than those reported in Table I. To illustrate an
example performance of the GA for triangulation,
Figure 5 depicts a random triangulation from the ini-
tial population pool for the random set of 150 points,
and Figure 6 shows the final result obtained by the
parallel GA,

Table II depicts the results of the greedy, generational
GA, and simulated annealing triangulation algorithms
for Type II datasets. The steady-state GA was not
included since its performance was consistently infe-
rior to the generational GA. We generated Type 11
datasets of size n, for n = 10, 20, 30, 40, 50, 100, and
200. Results show in five of the seven datasets tested
the generational GA outperformed the simulated
annealing algorithm. Furthermore, the generational
GA in every instance obtained better results than the
greedy algorithm, except for n = 10 where the same
result was obtained. These results serve to illustrate
the genetic algorithm is again superior to the simulat-
ed annealing algorithm, and whether random or
specially contrived data is used, the genetic algorithm
should be the algorithm of choice for the triangulation
problem.
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(a)

Figure 1: Definition of a move.
(a) Replacing edge AC by BD.
(b) Edge AC is not replaceable by BD.
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Figure 2: An example of triangulation with 6 points.

Edgeindex 1 2 3 4 S 6 7 8 9 10

“endptl |1 1|1 |2]2|3]3)|ala]s

endpt2 | 2 |3 |6 |3 |4 |4 |6 |5 |66

Figure 3 (a): The edge array data structure for Figure 2.

Triangleindex 1 2 3 4 5

endptl |1 |1 |2 |3 |4

endpt2 |2 |3 |3 |4 |5

endpt3 | 3 | 6 |4 |6 |6

Figure 3 (b): The associated triangle array data structure for Figure 2.

e

Figure 4: A set of points that reside entirely on an arc of a circle
such that the arc subtends less than 180 degrees. :



Algorithm

Number of Greedy Gen. GA Gen. GA S-S GA S-S GA SA Parallel
Points without/Mut. | with Mut. | without/Mut. | with Mut. GA
10 2705.2* 2705.2* 2705.2* 2705.2* 2705.2* 27052+ 2705.2*
20 4795.9* 4795.9* 4795.9* 4795.9* 4795.9* 5016.6 4795.9*
30 7177.6 7176.9* 7176.9*% 7176.9* 7176.9* 7513.5 7176.9*
40 8668.1 8659.9 8668.1 8659.9 8680.4 8657.2* 8660.9
50 9737.0 9737.0 9728.9* 9728.9* 9736.8 9815.5 9728.9*
60 10938.2 10938.2 10930.0* 10969.2 11018.0 11267.0 10930.0*
70 11729.3* 11762.1 11738.0 11773.1 121259 121949 11730.4
80 12440.6 12427.6 12496.9 12497.0 12507.5 12902.8 12426.8*
90 12161.5* 13180.6 13258.3 13246.1 13230.7 13645.0 13165.9
100 13960.1 13910.5* 13910.5* 14011.3 13943.7 14844 .0 13946.8
110 14535.1 14573.3 14604.1 14747.3 146212 15004.8 14518.7*
120 15130.3 151249 15135.5 15382.9 15200.5 15770.0 15116.4*
130 15635.6 156243 15643.2 15788.2 15667.5 16503.3 15562.8*
140 15947.8 15964.7 15992.5 16069.6 15964 .4 16548.2 15933.6*
150 17003.2 17021.1 17020.6 175124 17016.9 17962.7 16981.8*
160 17692.8 17733.5 17707.7 17925.6 17736.8 18826.0 17687.1*
170 18157.6 18200.9 18191.3 18605.5 18180.6 20460.8 18154.4*
180 18722.5 18801.0 18795.2 19048.4 18719.9*% | 20798.8 187289
190 19281.6 195144 19338.2 19802.4 194939 20659.2 19276.5*
200 19711.2% 20223.0 20131.8 20591.7 202344 21882.9 20031.7

Table I: Triangulation Results for Random Point Sets
(Type I Datasets) Using Various Algorithms.

(* Indicates the Best Result)

Number Algorithm

of Points | Greedy | Generational GA SA
10 2265.8 2265.8 2300.9
20 2857.6 28449 2869.0
30 3279.3 3247.7 32123
40 3544.1 35249 35273
50 3814.1 3763.2 37522
100 4393.5 43742 4380.9
200 5005.4 4989.6 5060.3

Table II: Triangulation Results for Contrived Point
Sets (Type II Datasets) Using Various Algorithms
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