A Point To Multipont Routing Problem

Liming Zhu

 Roger L. Wainwright

Dale A. Schoenefeld
Department of Mathematical and Computer Sciences

600 South College Avenue

University of Tulsa,

 Tulsa, OK USA

{rogerw,dschoen}@euler.mcs.utulsa.edu

ABSTRACT

An algorithm that combines a Genetic Algorithm (GA) and a Heuristic Steiner Tree Algorithm for the Point to Multipoint Routing Problem (PMRP) is presented. The Steiner Tree algorithm is used for finding a minimal cost tree in the network for a given request. The Genetic Algorithm is used to determine the optimal ordering of a subset of requests. Each request has a single source and multiple destinations. This algorithm allows the scheduler to find optimal or near-optimal ordering of a subset of requests that have optimal or near optimal path through the network from a large set of requests.

INTRODUCTION

The request scheduling is a process that finds optimal or near optimal routing for a given request through a communications network. The Point to Multipoint Routing Problem (PMRP) is to find optimal or near optimal routing for a set of requests. Each request has a single source and multiple destinations. This paper presents an algorithm for point to multipoint routing problem that uses a genetic algorithm and a heuristic Steiner tree algorithm. The Steiner Tree algorithm is used for finding a minimal cost tree in the network for a given request. The Genetic Algorithm is used to determine the optimal ordering of a subset of requests that have optimal or near optimal path through the network from a large set of requests.

POINT TO MULTIPOINT ROUTING PROBLEM

The routing request where each request originates at single source node and may have several destination nodes is called the point to Multipoint Routing Problem (PMRP). Frequently, a telecommunication company needs to transmit the same signal (request) to many different destinations over a telecommunication network. Several signals may need to transmit in the same time. Sometime, the company needs to make a decision about how many requests are send in the same time and which subset of requests send first.

The technique for solving this problem is that first finds a minimal spanning tree (MST) for each of point to multipoint request. In this way, the largest possible number of requests can be found on the least possible cost.

An example for the PMRP is shown in Figure 1. The network consists of 8 nodes and eleven edges. Each edge has associated with it a cost and a capacity. The cost is per unit of capacity. Now consider three message requests, each request contains a source node, one or more destination nodes, and a message capacity. To route these requests, the scheduler must find a MST in the network for each request and no request can be blocked. The four requests can be routed in any order. However, the different order can greatly effect the solution.

Consider R1, R2, and R3 as a message routing order. To route R1 (G to C, G to D and G to F), we use a capacity of 4 units on edges GH, HC, GD and GF, which by observation, represents the least cost for message R1. For R2 (A to E and A to G), a capacity of 6 units is used on edges AB, BE, EH and HG. For R3 (H to C and H to D), a capacity of 3 units is used on edges HC, HE and ED. Figure 2 shows the results for routing R1, R2 and R3 in that order.

GENETIC ALGORITHM

The Genetic Algorithms (GA) were developed by John Holland in 1975. The method of the GA is based on the principles of natural genetics and survival of the fittest. The idea in the GA was to evolve a population of candidate solutions to a given problem, move each candidate solutions from one generation to another generation using a kind of “natural selection” together with the genetics-inspired operators of crossover, biased reproduction and mutation. Each feasible solution is encoded as a chromosome. Each chromosome is given a measure of fitness via a fitness (evaluation) function. The fitness of chromosome determines its ability to survive and produce offspring.

In our GA, we use an order based genetic algorithm where a chromosome is a permutation of integer. Each integer represents a request. The GA implementation program we used is LibGA [3].

STEINER TREE PROBLEM IN A GRAPH

The Steiner problem in a Graph (SPG) is one of the classic problems of combinatorial optimization. In a given graph and a designated subset of the vertices, the task is to find a minimum cost subgraph for the designated vertices. For example, given a connected, undirected graph G = (V, E), and a subset W (V, the cost of a graph G is the sum of the cost of all edges of G, and denoted by C(G), compute a connected subgraph G’ = (V’, E’) of G such that W (V’ and C(G’) is minimal. Any acyclic subgraph G’ of G such that W (V’ is called a Steiner Tree for W in G. A solution G’ with minimal cost is called a Minimal Steiner Tree (MST) for W in G. The SPG is NP-complete problem [4].

METHODOLOGY AND IMPLEMENTATION

In our GA a chromosome is a permutation of the number of requests, n. For example, suppose there are n = 20 requests to schedule in the given network, then the chromosome is a permutation of the integers, 1…20. In practice, it is rarely possible to schedule all of the requests, regardless of the order we use. Thus some subset, k (1<= k <= n) of the n requests is selected and the GA determines the best order to route k requests from among n. This is accomplished as follows. First a fixed value for k is determined (say 11). Then the GA is run on a population of chromosomes each of size n. However, the evaluation function for a given chromosome is determined by routing only the first k request in the chromosome. The last n-k alleles in each chromosome are ignored in the evaluation. However all n alleles participate in the crossover operation thus mixing up the requests. When our algorithm finishes we will have the “best” routing for k requests. Since the goal is to route as many requests as possible, we rerun the GA with larger k values until a solution cannot be found or until k = n. The best chromosome for the largest k value is the solution to the given problem.

For a given chromosome, each request is routed through the network in the order it appears in the chromosome. To route a given request, the algorithm checks whether the edges have enough capacities to handle the request. If the edges do not have enough capacity, a high cost (or a penalty) is assigned to those edges to make the edges has less opportunity to be selected. Then the Steiner tree algorithm tries to find a optimal or near-optimal tree for current request. Once a near-optimal or optimal Steiner tree has been found, the capacities of the edges used in Steiner tree are decreased by the capacity of the request. This process is repeated until all requests has been routed. The evaluation function calculates the fitness values and assigns each value to the chromosome. The fitness value is equal the sum of the capacity used time its cost.

Consider a sample network in Figure 1 and the requests in Table 1. To evaluate a chromosome represented by 1,2,3, first a Steiner tree is found to route R1, then the Steiner trees for R2, R3 are found. Consider the route for R1, the algorithm finds a Steiner tree for R1. Because the capacity of R1 is four and all links in the network have a capacity of twelve, all links are usable. The result is shown in Figure 3. For R2, all links in the network still available, therefor a Steiner tree found for R2. The result is shown in Figure 4. However, the capacities of edges AB, BE are zero. This means the edges AB and BE are unusable. For R3, the links involved R3 are still available. A Steiner tree found for R3. The result is shown in Figure 5.

Request
Source
Destination(s)
Capacity

R1
G
C, D, F
4

R2
A
E, G
6

R3
H
C, D
3

Table 1. Three sample requests.

[image: image1.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 2. A network after Routing R1,R2 and R3

[image: image2.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 12)

(6, 12)

(2, 12)

(3, 12)

(7, 12)

(4, 12)

(5, 12)

(4, 12)

(2, 12)

Figure 1. A Network with cost, capacity on each edge

[image: image3.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 12)

(3, 12)

(7, 8)

(4, 12)

(5, 12)

(4, 12)

(2, 8)

Figure 3. The Steiner Tree for R1 (dashed lines)

[image: image4.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 0)

(3, 6)

(7, 8)

(4, 12)

(5, 12)

(4, 0)

(2, 2)

Figure 4. The Steiner tree for R2 (dashed lines)

[image: image5.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 5. The Steiner tree for R3 (dashed lines)

In this research, A genetic algorithm was used for finding the best ordering chromosome. The initial population was randomly generated permutation integer. The pool size was fifty. The cross over method is ordered based PMX. Roulette wheel selection method was used. Mutation has not used. The GA terminated after 100 iteration or upon convergence. The program used to find Steiner trees was an adapted code developed by Alexander and Robins [1]. The code for GA to find the best ordering also an adapted code was developed by Christensen et al [2].

TEST DATA

The test data set for the network was obtained by modifying Christensen et al ’s test data set [2]. Each edge on network was assigned a capacity of twelve and a random cost from one to ten. The test data set has sixty-one nodes and one hundred thirty three edges. The GA was run for k requests (8 to 19) from 20 requests. The 20 requests are listed in Table 2. Final results in Table 3.

Requests
Source Node
Destination Node
Capacity

1
36
25, 7, 40, 23
8

2
17
46,24,30,40,31,41,15
5

3
48
9, 3
9

4
41
50,22,27,35,13
6

5
2
49,6,33,14,23,18,47,27
5

6
13
28
6

7
50
44,28,5,31,45,12
7

8
24
30,29,20
5

9
52
13,55,22,9
4

10
53
28,52,13,55,41,14
6

11
10
31,20,5,40
5

12
15
30,20,23,22,18
4

13
14
9,35,16
4

14
61
15,33,38,20
3

15
55
4,41,21
5

16
14
16,43,44,31,9
7

17
60
28,14
2

18
9
6,35,30,7,48,31
4

19
51
54,40,10
6

20
51
23,10
5

Table 2: Test Case Requests (20 requests)

RESULTS

The GA found feasible solutions for each case for k = 8…18. For k = 19, the fitness value is very high indicated no solution. The high fitness value obtained due to the high cost assigned to the edges that do not have available capacities. That means the Steiner tree algorithm fails to find an optimal tree without employing an edge that was unusable and there may not be a feasible solution for case of nineteen on this network. Table 3 shows the results for the requests and their fitness values found by the genetic algorithm for each of the test cases. As a benchmark, the GA implementations for the test case k = 19 took two hours and thirty minutes of CPU time running on a Sun workstation.

This research demonstrates the potential for PMRP scheduler to route the different subset requests. If adding the profits to each request, the company could use the scheduler to get most profitable and less cost of subset of requests.

Test Case
No. of subset request
Final Ordering
Fitness Value

1
8
14,17,9,12,6,13,20,8
579

2
9
8,12,14,13,9,20,19,6,17
705

3
10
8,13,14,12,18,20,19,6,9,17
833

4
11
9,13,15,8,20,12,6,18,19,17,14
968

5
12
17,11,19,6,12,13,8,18,14,15,9,20
1148

6
13
10,19,9,8,15,13,14,18,12,6,11,17,20
1328

3
14
19,6,8,10,13,9,15,4,18,17,11,14,12,20
1519

8
15
2,10,11,9,15,19,8,13,18,20,4,14,17,12,6
1785

9
16
9,17,19,8,15,11,6,14,5,4,10,12,20,2,18,13
2218

10
17
5,2,10,20,9,17,13,16,18,15,19,4,6,8,14,11,12
2513

10
18
15,8,9,1,13,5,17,10,4,2,19,20,14,11,12,16,18,6
2971

Table 3. Results of feasible solution, k = 8 … 18.

References

[1] Michael J. Alexander and Gabriel Robins, “ New Performance-Driven FPGA Routing Algorithms”, Proceedings of ACM/SIGDA Design Automation Conference, June 1995.

[2] Heather L. Christensen, Roger L. Wainwright, and Dale A. Schoenefeld, “ A hybrid Algorithm for the Point to Multipoint Routing Problem”. Symposium on Applied Computing (SAC’97), 1997, San Jose, CA, pp. 263-268.

[3] A.L. Corcoran and R.L. Wainwright, “ Using LibGA to Develop Genetic Algorithms for Solving Combinatorial Optimazation Problems”, Practical Handbook of Genetic Algorithms, Vol. 1, Lance chambers, ed., CRC Press, 1995, pp 143-172.

[4] Henrik Esbensen, “Finding (Near-) Optimal Steiner Tree in large Graphs”, Processings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann Publishers, Inc., 1995, pp485-592.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image6.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 12)

(3, 12)

(7, 8)

(4, 12)

(5, 12)

(4, 12)

(2, 8)

Figure 3. The Steiner Tree for R1 (dashed lines)

[image: image7.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 0)

(3, 6)

(7, 8)

(4, 12)

(5, 12)

(4, 0)

(2, 2)

Figure 4. The Steiner tree for R2 (dashed lines)

[image: image8.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 2. A network after Routing R1,R2 and R3

[image: image9.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 12)

(6, 12)

(2, 12)

(3, 12)

(7, 12)

(4, 12)

(5, 12)

(4, 12)

(2, 12)

Figure 1. A Network with cost, capacity on each edge

[image: image10.wmf]A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 5. The Steiner tree for R3 (dashed lines)

_924517387.doc

A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 12)

(3, 12)

(7, 8)

(4, 12)

(5, 12)

(4, 12)

(2, 8)

Figure 3. The Steiner Tree for R1 (dashed lines)

_924518578.doc

A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 2. A network after Routing R1,R2 and R3

_924518970.doc

A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 5)

(2, 0)

(3, 3)

(7, 8)

(4, 9)

(5, 12)

(4, 0)

(2, 2)

Figure 5. The Steiner tree for R3 (dashed lines)

_924517682.doc

A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 8)

(6, 8)

(2, 0)

(3, 6)

(7, 8)

(4, 12)

(5, 12)

(4, 0)

(2, 2)

Figure 4. The Steiner tree for R2 (dashed lines)

_924498275.doc

A

B

C

D

E

F

G

H

(4, 12)

(3, 12)

(6, 12)

(6, 12)

(2, 12)

(3, 12)

(7, 12)

(4, 12)

(5, 12)

(4, 12)

(2, 12)

Figure 1. A Network with cost, capacity on each edge

