Game Theory - Repeated Games

Stéphane

today :-}
Outline

1 Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts

2 Repeated Game
Outline

1. Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts

2. Repeated Game
What is a normal form game?

Definition

An *n*-player game can be represented by a mapping

\[R : A_1 \times A_2 \times \ldots \times A_n \mapsto \mathbb{R}^n \]

where \(A_i \) denotes the discrete set of action available to player \(i \)

- \(a = (a_1, a_2, \ldots, a_n) \) is the joint action of the players
- \(R(a) \) is the payoff for each player (\(R_i(a) \) is the payoff of the \(i^{th} \) player, i.e. the \(i^{th} \) component of \(R(a) \))

For a 2-player game, \(R \) can be represented by 2 matrices.
Basic Concepts

What is a strategy?

Definition
A **pure strategy** is a synonym for an action \(a \in A_i \).

Definition
A **mixed strategy** \(\pi_i \) is a probability distribution over the action space \(A_i \).
Basic Game Theoretic Concept

Repeated Game

Basic Concepts

examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Problem: Where to go on a date: Soccer or Opera?

Requirements:
1. avoid to be alone
2. be at the best place

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>

- Problem: me and my buddy got busted!
- Cooperate: I shut my mouth
- Defect: I blame my buddy
Game Theory is a big field

other concepts

- **simultaneous or sequential**: play simultaneously: each player makes a decision in turn (game tree).
- **perfect/imperfect information**: ability to observe the actions of the opponent(s)
- **complete/incomplete information**: complete information: knowledge of the structure of the games (payoffs matrices).
- **one stage/multistage game**: the outcome of a joint action can be a new game
Game Theory is a big field

other concepts

simultaneous or sequential: play simultaneously: each player makes a decision in turn (game tree).

perfect/imperfect information: ability to observe the actions of the opponent(s)

complete/incomplete information: complete information: knowledge of the structure of the games (payoffs matrices).

one stage/multistage game: the outcome of a joint action can be a new game
Game Theory is a big field

other concepts
simultaneous or sequential: play simultaneously: each player makes a decision in turn (game tree).
perfect/imperfect information: ability to observe the actions of the opponent(s)
complete/incomplete information: complete information: knowledge of the structure of the games (payoffs matrices).
one stage/multistage game: the outcome of a joint action can be a new game
Properties of the payoffs

stochastic game: payoff can be stochastic

Bayesian game: incomplete information game: at the start of the game, some player have private information that others do not (example: bargaining game)

constant/general sum game: for each joint action \(a \in \prod_i A_i \), the sum of the payoff \(\sum_i R_i(a) \) can be constant.

Team Game or Cooperative game: all the players receive the same payoff for a joint action.
Dominance

Definition

An outcome X **strongly dominates** another outcome B if all agents receive a higher utility in X compared to Y.

$$a > b \iff \forall i \in [1..n] R_i(a) > R_i(b)$$

An outcome X **weakly dominates** (or simply dominates) another outcome B if at least one agent receives a higher utility in X and no agent receives a lesser utility compared to outcome Y.

$$a \geq b \iff \exists j | R_j(a) > R_j(b) \text{ and } \forall i \in [1..n], i \neq j R_i(a) \geq R_i(b)$$
Properties

Pareto Optimality

Definition

A Pareto optimal outcome is one such that there is no other outcome where some players can increase their payoffs without decreasing the payoff of other players. A non-dominated outcome is Pareto optimal.
Regret measures how much worse an algorithm performs to the best static strategy.

Definition

the **external regret** is the difference that a player would receive if it were to play the pure strategy j instead of playing according to π.

Definition

the **internal regret** is the benefit that player i would get by switching all of its plays of action j to action k instead.

Definition

the **total internal (external) regret** is the max of the internal (external) regret.
Definition

An equilibrium is a self-reinforcing distribution over strategy profile.

- Assumption: players are rational (issue with bounded rationality)
- Different natures of equilibrium.
Minimax equilibrium for constant-sum games

minimize the payoff of the opponent: If deviation from equilibrium, the opponent gets an advantage.

Minimax value of a game for player 1

\[\min_{y} \max_{x} R_1(x, y) \]

Properties

- There exists at least one minimax equilibrium in constant sum game.
- set of minimax equilibrium is convex, all have the same value
Nash equilibrium: rationality

mutual best response
if the strategy of the opponent remains fixed, the player does not benefit by changing its strategy

Properties
- **existence:**
 - pure strategy Nash equilibrium may not always exist
 - but there always exists a mixed strategy Nash equilibrium
- **complexity to find a Nash equilibrium:** there exists exponential time algorithms to compute it, but nobody proved it is NP-Complete.
Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Basic Game Theoretic Concept

Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Basic Game Theoretic Concept

Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy $(\frac{3}{4}, \frac{1}{4})$

Pareto Optimal D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Basic Game Theoretic Concept

Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy \((\frac{3}{4}, \frac{1}{4})\)

Pareto Optimal D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Basic Game Theoretic Concepts

Repeated Games

Equilibrium Concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy \(\left(\frac{3}{4}, \frac{1}{4} \right) \)

Pareto Optimal D,C and C,D

Example (Prisoners' dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy \((\frac{3}{4}, \frac{1}{4})\)

Pareto Optimal D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy \((\frac{3}{4}, \frac{1}{4}) \)

Pareto Optimal D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Basic Game Theoretic Concept

Repeated Game

Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium: D,C and C,D and one mixed strategy \(\left(\frac{3}{4}, \frac{1}{4} \right) \)

Pareto Optimal: D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>
Equilibrium concepts

Examples

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Nash equilibrium D,C and C,D and one mixed strategy \((\frac{3}{4}, \frac{1}{4}) \)

Pareto Optimal D,C and C,D

Example (Prisoners’ dilemma)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,1</td>
</tr>
<tr>
<td>C</td>
<td>1,4</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Nash equilibrium \((D, D)\) is the only Nash equilibria of the game.

Pareto Optimal \((D, C), (C, D)\) and \((C, C)\)

N.B. A Nash equilibrium may not be Pareto Optimal
Equilibrium concepts

Correlated equilibrium

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- both agents play mixed strategy \((\frac{1}{2}, \frac{1}{2})\): average payoff is 2.5
- how to avoid bad outcome?
Correlated equilibrium

Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- both agents play mixed strategy ($\frac{1}{2}, \frac{1}{2}$): average payoff is 2.5
- how to avoid bad outcome?

Correlated equilibrium

Players can observe a public random variable and make their decision based on that observation. Player’s distribution may no longer be independent. solved by linear program
Example (Battle of the sexes)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2,2</td>
<td>4,3</td>
</tr>
<tr>
<td>C</td>
<td>3,4</td>
<td>1,1</td>
</tr>
</tbody>
</table>

- flip a (fair?) coin
- head: husband cooperates
- tail: wife cooperates

Example (Traffic light)

- 2 actions: Stop or Go
- model the light as being randomly Green or Red. It is the public random variable
- choose life
Outline

1. Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts

2. Repeated Game
Outline

1. Basic Game Theoretic Concept
 - Basic Concepts
 - Properties
 - Equilibrium concepts

2. Repeated Game
Repeated Game

Definition
In the repeated game a game M (called stage game) is played over and over again

- one shot game: there is no tomorrow
- repeated game: model a likelihood of playing the game again with the same opponent
- finitely/infinitely repeated game
What is a strategy in a repeated game?

Example:
Tit for Tat strategy
- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.
What is a strategy in a repeated game?

In the repeated game, a pure strategy depends also on the history of play thus far.

Example

Tit for Tat strategy
- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.
What is a strategy in a repeated game?
In the repeated game, a pure strategy depends also on the history of play thus far.

Example
Tit for Tat strategy
- Play the action played by the opponent the last round
- Tit for tat strategy can be an equilibrium strategy in PD or Chicken.
Payoff criterion

Average criterion
Average payoff received throughout the game by player i:

$$\sum_{t=0}^{\infty} M_i(a^t)$$

where a^t is the joint action of iteration t.

Discounted-sum criterion
Discounted sum of the payoff received throughout the game by player i:

$$\sum_{t=0}^{\infty} \gamma^t M_i(a^t)$$
Basic Game Theoretic Concept

Payoff Space for a two-player game

- **$n \times n$** two-player game
- R and C are the matrices of the row and column player.
- $V = \{(R(i, j), C(j, i))|(i, j) \in [1..n]^2\}$
- the **payoff space** is the Convex Hull \mathcal{H} with vertices in V

Proof.

$\forall (x, y) \in \mathcal{H}, \exists \lambda \in \mathbb{R}^{n^2} \mid x = \sum_{i=1}^{n} \lambda_i R(i) \text{ and } y = \sum_{i=1}^{n} \lambda_i C(j)$

with $\sum_{i=1}^{n} \lambda_i = 1$.

Play the joint action i with the proportion λ_i.

□
Example and payoff with independent distribution

Battle of the Sexes

Prisoners’ dilemma
Minimax Value

Feasible region for equilibrium

Minimax value for row and column player:

\[v_r = \min_y \max_x R(x, y) \]
\[v_c = \min_x \max_y C(x, y) \]

The minimax value security value
It defines a feasible region (for an equilibrium)

\[\mathcal{F} = \{(x, y) \in \mathcal{H} | x \geq v_r, y \geq v_c \}. \]
Feasible region for Battle of Sexes and Prisoners’ dilemma

Pareto frontier

Payoff of woman

Payoff of man

Payoff of column player

Payoff of row player
Folk Theorem

Theorem

Any payoff \(r \in F \) can be sustained by a Nash equilibrium.

Proof.

Build strategies that converge to the desired payoff and that make it non-rational to deviate from the strategy.
Learning in Games

Desirable Properties

Convergence: a learning algorithm should converge

Rationality: play optimally against a stationary opponent

no regret: avoid regrets

Or are they?

Is it possible to find equilibrium that can be good for both players?
"That's all Folks!"